People-tracking-by-detection and people-detection-by-tracking

Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 IEEE Conference on Computer Vision and Pattern Recognition s. 1 - 8
Hlavní autoři: Andriluka, M., Roth, S., Schiele, B.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2008
Témata:
ISBN:9781424422425, 1424422426
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scenes, but false positives have remained frequent. The identification of particular individuals has remained challenging as well. Tracking methods are able to find a particular individual in image sequences, but are severely challenged by real-world scenarios such as crowded street scenes. In this paper, we combine the advantages of both detection and tracking in a single framework. The approximate articulation of each person is detected in every frame based on local features that model the appearance of individual body parts. Prior knowledge on possible articulations and temporal coherency within a walking cycle are modeled using a hierarchical Gaussian process latent variable model (hGPLVM). We show how the combination of these results improves hypotheses for position and articulation of each person in several subsequent frames. We present experimental results that demonstrate how this allows to detect and track multiple people in cluttered scenes with reoccurring occlusions.
AbstractList Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scenes, but false positives have remained frequent. The identification of particular individuals has remained challenging as well. Tracking methods are able to find a particular individual in image sequences, but are severely challenged by real-world scenarios such as crowded street scenes. In this paper, we combine the advantages of both detection and tracking in a single framework. The approximate articulation of each person is detected in every frame based on local features that model the appearance of individual body parts. Prior knowledge on possible articulations and temporal coherency within a walking cycle are modeled using a hierarchical Gaussian process latent variable model (hGPLVM). We show how the combination of these results improves hypotheses for position and articulation of each person in several subsequent frames. We present experimental results that demonstrate how this allows to detect and track multiple people in cluttered scenes with reoccurring occlusions.
Author Roth, S.
Schiele, B.
Andriluka, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Andriluka
  fullname: Andriluka, M.
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt
– sequence: 2
  givenname: S.
  surname: Roth
  fullname: Roth, S.
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt
– sequence: 3
  givenname: B.
  surname: Schiele
  fullname: Schiele, B.
  organization: Comput. Sci. Dept., Tech. Univ. Darmstadt, Darmstadt
BookMark eNpVkM1OwzAQhA0UiVLyAIhLX8DB9q4d-8ABReVHqkSFKq6VY69RoCRRkkvfHlALgrmMNPNpDnPOJk3bEGOXUuRSCnddvqyecyWEzVHbQls4YpkrrESFqBSCOmZTKQxw46Q7-dcpPfnTnbFsGN7El1CDkWbKblbUdlviY-_De9288mrHI40Uxrpt5r6J824P_IbfxA99wU6T3w6UHXzG1neLdfnAl0_3j-XtktcK5citlsY7kaKVhXc6kkuKKDoMUBhAq41FkchGESojdUKEKlYAwRYpKA0zdrWfrYlo0_X1h-93m8MX8Ami_U9u
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2008.4587583
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424422432
1424422434
EISSN 1063-6919
EndPage 8
ExternalDocumentID 4587583
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-8516a90fd817a95de9f2eed94c37634856840fe8d0cb615f443bdb33c87fc253
IEDL.DBID RIE
ISBN 9781424422425
1424422426
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259736801072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:16:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-8516a90fd817a95de9f2eed94c37634856840fe8d0cb615f443bdb33c87fc253
PageCount 8
ParticipantIDs ieee_primary_4587583
PublicationCentury 2000
PublicationDate 2008-06
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06
PublicationDecade 2000
PublicationTitle 2008 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453616
ssj0023720
ssj0003211698
Score 2.3282607
Snippet Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cameras
Computer science
Detectors
Gaussian processes
Hidden Markov models
Image sequences
Indexing
Layout
Legged locomotion
Surveillance
Title People-tracking-by-detection and people-detection-by-tracking
URI https://ieeexplore.ieee.org/document/4587583
WOSCitedRecordID wos000259736801072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFT2ialbzx0rBpbL0tzaOhQQiihZAuWJUEWpyROof--kiw7FLp0sw5hCyHrvrv77g7gkRFbGO4zlnNMEVWWICUsRZYqzazMC6pCndm3fD4Xq5Vc9OCpy4UxxgTymXn2jyGWr7flwbvKJpQ5dC1IH_p5zptcrc6f4qAJ4RHq-DFxlg2XXUQB-24sIfLJCeIyk22SF_Y6qq39FMcshj-zVE6mH4v3hnIZv_6rDUvQQrPh_9Z_BuNjOl-y6BTVOfRMdQHDiD-T-Hfvnaht8dDKRuCuTM8wR_WuKL1THalvpE0d-FtVUlQ6aSjoR6Gf0c4ew3L2spy-othxAW2cJq-Rg1-8kKnVIssLybSRFru1SVr6e4gK5kvDWCN0WioHhSylRGlFSClyW2JGLmFQbStzBQl1ZhAjDo54A4-lxr0Z0yIz2GgqUy6vYeT3Z_3Z1NRYx625-Vt8C6cNT8N7P-5gUO8O5h5Oyq96s989hIPwA38sqUU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRp6ib-tg8-Gtcll7Z5FsfEOYYM2dtomgT20snWCf73Jm3aIfjiW3OEtglt7ru77-4A7jkzqY5cxnJMkaA0jMjEIDEoFTciTlGWdWbH8WSSzOdi2oKHJhdGa12Sz_Sjuyxj-WqVbZ2rrI_couuE7cE-R6Rhla3VeFQsOGGRBztuzKxtE4kmpkBdP5Yy9hkxEomBqNO8qNNSdfUnP-Y-ADoIRf_pY_pekS798381Yin10LDzvxUcQ2-X0BdMG1V1Ai2dn0LHI9DA_98bK6qbPNSyLthD03HMSbFOM-dWJ_KbKF2UDK48SHMVVCT0ndDNqGf3YDZ8nj2NiO-5QJZWlxfEArAoFaFRySBOBVdaGGrfTWDmTiJMuCsOY3SiwkxaMGQQmVSSsSyJTUY5O4N2vsr1OQRoDSHOLCBxJh4Ptb0zxXSgqVYowkhcQNftz-Kzqqqx8Ftz-bf4Dg5Hs7fxYvwyeb2Co4q14Xwh19Au1lt9AwfZV7HcrG_Lj-IHhrisjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=People-tracking-by-detection+and+people-detection-by-tracking&rft.au=Andriluka%2C+M.&rft.au=Roth%2C+S.&rft.au=Schiele%2C+B.&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2008.4587583&rft.externalDocID=4587583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon