Quasi-biclique edge concentration: A visual analytics method for biclustering

Biclustering is a well-known approach for data mining, and it is applied in many fields, such as genome analyses, security services, and social network analyses. Biclustering finds bicliques contained in a bipartite graph. However, in real data, a biclique may lack several edges because of various r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Pacific Visualization Symposium s. 215 - 219
Hlavní autori: Onoue, Yosuke, Koyamada, Koji
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2017
Predmet:
ISSN:2165-8773
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Biclustering is a well-known approach for data mining, and it is applied in many fields, such as genome analyses, security services, and social network analyses. Biclustering finds bicliques contained in a bipartite graph. However, in real data, a biclique may lack several edges because of various reasons, such as errors. In this situation, traditional biclustering methods cannot find correct biclusters. A novel biclustering method that can analyze real data under uncertainty is needed. Quasi-biclique is a mathematical concept that represents incomplete bicliques. We propose the quasi-biclique edge concentration (QBEC) method, which is a visual analysis method for biclustering using quasi-biclique mining. QBEC includes visual representations and user interactions for quasi-bicliques. Quasi-bicliques contained in a bipartite graph are represented based on edge concentration. The incompleteness of a quasi-biclique is reflected in edge opacity. Users can interactively explore data by adjusting the incompleteness parameter of the quasi-biclique. We demonstrate the effectiveness of QBEC using real-world data.
ISSN:2165-8773
DOI:10.1109/PACIFICVIS.2017.8031597