Fused Text Segmentation Networks for Multi-oriented Scene Text Detection
In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer fea...
Gespeichert in:
| Veröffentlicht in: | 2018 24th International Conference on Pattern Recognition (ICPR) S. 3604 - 3609 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2018
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1 % and 82.0 % respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach. |
|---|---|
| AbstractList | In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1 % and 82.0 % respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach. |
| Author | Guo, Jie Dai, Yuchen Qiu, Weidong Chen, Kai Huang, Zheng Gao, Yuting Xu, Youxuan |
| Author_xml | – sequence: 1 givenname: Yuchen surname: Dai fullname: Dai, Yuchen organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Zheng surname: Huang fullname: Huang, Zheng organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Yuting surname: Gao fullname: Gao, Yuting organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Youxuan surname: Xu fullname: Xu, Youxuan organization: Xiamen No. 1 High School, Fujian, China – sequence: 5 givenname: Kai surname: Chen fullname: Chen, Kai organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Jie surname: Guo fullname: Guo, Jie organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China – sequence: 7 givenname: Weidong surname: Qiu fullname: Qiu, Weidong organization: School of Electronic Information and Electrical, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNotj8tOwzAQRY0EElDyAYhNfiBlxo7tyRIF-pDKQ7SsK8eZIEOboMQV8PcUtau7OPdc6V6K07ZrWYhrhDEiFLfz8uV1LAFpTDo3YMyJSApLqBUZZYnUuUiG4QMApCGVK7gQs8lu4Dpd8U9Ml_y-5Ta6GLo2feL43fWfQ9p0ffq428SQdX3Y43176bnlg3PPkf2_cCXOGrcZODnmSLxNHlblLFs8T-fl3SILMseYETppJGrNnhErw6a2NVSFMY3mwnogrrhCr9kqVUGdM_lcOlCKsGmcVSNxc9gNzLz-6sPW9b_r41_1BzbYTV0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPR.2018.8546066 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538637883 153863788X |
| EndPage | 3609 |
| ExternalDocumentID | 8546066 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i241t-81a262155ece11b6e6d7d0b966f5e97c08ebeb1c5e733b0d4e8c42a03381ffa73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455146803101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:51:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-81a262155ece11b6e6d7d0b966f5e97c08ebeb1c5e733b0d4e8c42a03381ffa73 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8546066 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08 |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 24th International Conference on Pattern Recognition (ICPR) |
| PublicationTitleAbbrev | ICPR |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683430 |
| Score | 2.4414914 |
| Snippet | In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3604 |
| SubjectTerms | Benchmark testing Feature extraction Object detection Pipelines Semantics Task analysis |
| Title | Fused Text Segmentation Networks for Multi-oriented Scene Text Detection |
| URI | https://ieeexplore.ieee.org/document/8546066 |
| WOSCitedRecordID | wos000455146803101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VioGpQIv4VgZG0saJP-dCVZaqgiJ1q2zngjqQoibl92M7oQiJhc2ydLJ0J_udfe_5AO4MT4VWXvZLUxpTRjDWmpgYNWcMuabC6NBsQsxmcrlU8w7c77UwiBjIZzj0w1DLzzd255_KRpJRn28fwIEQotFq7d9TUi4zmn0XLkmiRk_j-bPnbslha_ergUrAj0nvfysfw-BHiBfN9xBzAh0sT6HXZo5Ruy-rPkwnu8pNLNxJG73g23srKCqjWcPyriKXm0ZBbBtv_M_GdTB351xj84B1oGSVA3idPC7G07jtkRCvHfbWsSQ65Q62GVokxHDkucgT4y4xBUMlbCJdlAyxDEWWmSSnKC1NdeJupqQotMjOoFtuSjyHyArKJbNpwXNGqSo0UTkhBVEaXV4h0wvoe8esPppvMFatTy7_nr6CI-_7hit3Dd16u8MbOLSf9bra3obYfQE8I5sj |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQILTgA3xpgeOdGvavHoeTJsY0wRD2m1KUxftQIfWjt9PkpYhJC7cokhWJFuxHfv7YoDbhIdCxZb2S0PqU0bQV4okPirOGHJFRaLcsAkxmcj5PJ424G7LhUFEBz7Drl26Xn660htbKutJRm2-vQO7jNKQVGytbUUl5DKi0XfrkgRxb9SfPlv0luzWkr9GqLgIMmj97-xD6PxQ8bzpNsgcQQPzY2jVuaNX38yiDcPBpjAbM-NrvRd8e68pRbk3qXDehWeyU8_Rbf2V_du4dOLG01Uy91g6UFbegdfBw6w_9OspCf7SRN_Sl0SF3ARuhhoJSTjyVKRBYp4xGcNY6EAaOyVEMxRRlAQpRalpqALzNiVZpkR0As18leMpeFpQLpkOM54aBceZInFKSEZihSazkOEZtK1iFh_VRxiLWifnf2_fwP5w9jRejEeTxws4sHaokHOX0CzXG7yCPf1ZLov1tbPjF31Vnmo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+24th+International+Conference+on+Pattern+Recognition+%28ICPR%29&rft.atitle=Fused+Text+Segmentation+Networks+for+Multi-oriented+Scene+Text+Detection&rft.au=Dai%2C+Yuchen&rft.au=Huang%2C+Zheng&rft.au=Gao%2C+Yuting&rft.au=Xu%2C+Youxuan&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=3604&rft.epage=3609&rft_id=info:doi/10.1109%2FICPR.2018.8546066&rft.externalDocID=8546066 |