ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases

The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 3462 - 3471
Hauptverfasser: Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Bagheri, Mohammadhadi, Summers, Ronald M.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely ChestX-ray8, which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based reading chest X-rays (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.
AbstractList The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely ChestX-ray8, which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based reading chest X-rays (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems.
Author Bagheri, Mohammadhadi
Summers, Ronald M.
Xiaosong Wang
Zhiyong Lu
Le Lu
Yifan Peng
Author_xml – sequence: 1
  surname: Xiaosong Wang
  fullname: Xiaosong Wang
  email: xiaosong.wang@nih.gov
  organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 2
  surname: Yifan Peng
  fullname: Yifan Peng
  email: yifan.peng@nih.gov
  organization: Nat. Center for Biotechnol. Inf., Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 3
  surname: Le Lu
  fullname: Le Lu
  email: le.lu@nih.gov
  organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 4
  surname: Zhiyong Lu
  fullname: Zhiyong Lu
  email: luzh@nih.gov
  organization: Nat. Center for Biotechnol. Inf., Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 5
  givenname: Mohammadhadi
  surname: Bagheri
  fullname: Bagheri, Mohammadhadi
  email: mohammad.bagheri@nih.gov
  organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA
– sequence: 6
  givenname: Ronald M.
  surname: Summers
  fullname: Summers, Ronald M.
  email: rms@nih.gov
  organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA
BookMark eNpNkM1OwzAQhA0qEm3hyImLXyBlbaeJzQ1SoEiVQG35uVUbx1ZN06SKA6I8BM-MaTlw2tHOzifN9kinqitDyBmDAWOgLrLnx-mAA0sHIlEHpMeGQiYQD9P4kHQZJCJKFFOdf_qY9Lx_A-Ai5dAl39nS-PY1muJWXtJx7TeuxTKaaSwN3Xl0Z9IRtpijNxSrgl6bSi_X2Kw8rSv6YnBVbqPZ-8Y0H86bgmYleu-s09i6cPAbmdQB6b72i9rSrF6vg5ov6wY_6SjEAtyfkCOLpTenf7NPnm5v5tk4mjzc3WdXk8jxmLVRChyGuYI0thwtWp1oFd4hCwj1hVW5wTxG0FpqxkSRK8YsFDJhSnLBuRZ9cr7nOmPMYtO4UGa7kKCUHHLxA7UgZ0c
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.369
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 3471
ExternalDocumentID 8099852
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i241t-70205b9074f2afafc6c91098d03863f9beab4a0cc8c113db911f0d861982322c3
IEDL.DBID RIE
ISICitedReferencesCount 1952
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371403058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-70205b9074f2afafc6c91098d03863f9beab4a0cc8c113db911f0d861982322c3
PageCount 10
ParticipantIDs ieee_primary_8099852
PublicationCentury 2000
PublicationDate 2017-07
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.6140614
Snippet The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of...
SourceID ieee
SourceType Publisher
StartPage 3462
SubjectTerms Biomedical imaging
Diseases
Image segmentation
Machine learning
Pathology
X-ray imaging
Title ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
URI https://ieeexplore.ieee.org/document/8099852
WOSCitedRecordID wos000418371403058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePCECsZ3evBoYZ99eBQkHgwhgMqNdLttIOhCWDDyJ_zNTssCFy_emuk2u-l055t2ZvohdGchmnlJTLQfMxLRWBOeRJqo1NAoBRc5MtKRTbBOhw-HoltC97taGK21Sz7Tddt0sfx0plb2qKzBwZ3hMRjcA8bYplZrd54Swk6Gil0EIbDsKy7SSUNChS_292s2mm_dnk3qYvXQ5TnvWVUcqLQr__ucY1TbV-fh7g53TlBJZ6eoUriTuPhZcxBtGRu2sir6aVp6rCHpyTV_wFvOENIHRWns-rDrxC25lBbgsMxS_AiDx59yMc3xLMPvWk4_1qS_mlszk8MrHbGmTTlyWnZDXixEFiWeeGawrUOB1mAMK-4btzZRobyGXttPg-YzKRgZyASQfkkYOJdxYvfTJpBGGkUVuBuCp17IaWhEomUSSU8prnw_TBOwpMZLOWzSOHhugQrPUDmbZfrc1opzeFwJoxITaWGECBLNJA8iyjkAyAWq2hkfzTeXboyKyb78W3yFjqxCN3m016i8XKz0DTpUX8tJvrh1K-UX3G--lA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImugJFYy_7cGjBbZ1W-tRkGhEQgCVG-m6NhB0EAZG_gn_Zl_LgIsXb83rmi193fte-97rh9CNgeiwGvlEOX5IaOArwiKqiIx1QGNwkakWlmwibLVYv8_bOXS7qYVRStnkM1U2TRvLjydyYY7KKgzcGeaDwd3xKXWdVbXW5kTFg71MwDcxBNfwr9hYZ-CRgDt8e8NmpfbW7pi0rrDs2UznLa-KhZVG4X8fdIBK2_o83N4gzyHKqeQIFTKHEme_awqiNWfDWlZEPzVDkNUnHbFkd3jNGkK6oCqFbR-2nbgu5sJAHBZJjO9h8PBTzMYpniT4XYnxx5J0F1NjaFJ4paXWNElHVs92SNOAZFbkiScam0oUaPWGsOa-cX0VF0pL6LXx0Ks9koyTgYwA6-ckBPfSj8yOWrtCCy0DCQ4HZ3HVY4GneaREREVVSiYdx4sjsKW6GjPYpjHw3VzpHaN8MknUiakWZ_C45FpGmiquOXcjFQrm0oAxgJBTVDQzPpiurt0YZJN99rf4Gu099l6ag-ZT6_kc7RvlrrJqL1B-PluoS7Qrv-ajdHZlV80v7v3B2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=ChestX-Ray8%3A+Hospital-Scale+Chest+X-Ray+Database+and+Benchmarks+on+Weakly-Supervised+Classification+and+Localization+of+Common+Thorax+Diseases&rft.au=Xiaosong+Wang&rft.au=Yifan+Peng&rft.au=Le+Lu&rft.au=Zhiyong+Lu&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=3462&rft.epage=3471&rft_id=info:doi/10.1109%2FCVPR.2017.369&rft.externalDocID=8099852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon