ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication...
Gespeichert in:
| Veröffentlicht in: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 3462 - 3471 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2017
|
| Schlagworte: | |
| ISSN: | 1063-6919, 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely ChestX-ray8, which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based reading chest X-rays (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. |
|---|---|
| AbstractList | The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems. In this paper, we present a new chest X-ray database, namely ChestX-ray8, which comprises 108,948 frontal-view X-ray images of 32,717 unique patients with the text-mined eight disease image labels (where each image can have multi-labels), from the associated radiological reports using natural language processing. Importantly, we demonstrate that these commonly occurring thoracic diseases can be detected and even spatially-located via a unified weakly-supervised multi-label image classification and disease localization framework, which is validated using our proposed dataset. Although the initial quantitative results are promising as reported, deep convolutional neural network based reading chest X-rays (i.e., recognizing and locating the common disease patterns trained with only image-level labels) remains a strenuous task for fully-automated high precision CAD systems. |
| Author | Bagheri, Mohammadhadi Summers, Ronald M. Xiaosong Wang Zhiyong Lu Le Lu Yifan Peng |
| Author_xml | – sequence: 1 surname: Xiaosong Wang fullname: Xiaosong Wang email: xiaosong.wang@nih.gov organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA – sequence: 2 surname: Yifan Peng fullname: Yifan Peng email: yifan.peng@nih.gov organization: Nat. Center for Biotechnol. Inf., Nat. Inst. of Health, Bethesda, MD, USA – sequence: 3 surname: Le Lu fullname: Le Lu email: le.lu@nih.gov organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA – sequence: 4 surname: Zhiyong Lu fullname: Zhiyong Lu email: luzh@nih.gov organization: Nat. Center for Biotechnol. Inf., Nat. Inst. of Health, Bethesda, MD, USA – sequence: 5 givenname: Mohammadhadi surname: Bagheri fullname: Bagheri, Mohammadhadi email: mohammad.bagheri@nih.gov organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA – sequence: 6 givenname: Ronald M. surname: Summers fullname: Summers, Ronald M. email: rms@nih.gov organization: Dept. of Radiol. & Imaging Sci., Nat. Inst. of Health, Bethesda, MD, USA |
| BookMark | eNpNkM1OwzAQhA0qEm3hyImLXyBlbaeJzQ1SoEiVQG35uVUbx1ZN06SKA6I8BM-MaTlw2tHOzifN9kinqitDyBmDAWOgLrLnx-mAA0sHIlEHpMeGQiYQD9P4kHQZJCJKFFOdf_qY9Lx_A-Ai5dAl39nS-PY1muJWXtJx7TeuxTKaaSwN3Xl0Z9IRtpijNxSrgl6bSi_X2Kw8rSv6YnBVbqPZ-8Y0H86bgmYleu-s09i6cPAbmdQB6b72i9rSrF6vg5ov6wY_6SjEAtyfkCOLpTenf7NPnm5v5tk4mjzc3WdXk8jxmLVRChyGuYI0thwtWp1oFd4hCwj1hVW5wTxG0FpqxkSRK8YsFDJhSnLBuRZ9cr7nOmPMYtO4UGa7kKCUHHLxA7UgZ0c |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2017.369 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1538604574 9781538604571 |
| EISSN | 1063-6919 |
| EndPage | 3471 |
| ExternalDocumentID | 8099852 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i241t-70205b9074f2afafc6c91098d03863f9beab4a0cc8c113db911f0d861982322c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1952 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371403058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:33:39 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i241t-70205b9074f2afafc6c91098d03863f9beab4a0cc8c113db911f0d861982322c3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8099852 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07 |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.6140614 |
| Snippet | The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3462 |
| SubjectTerms | Biomedical imaging Diseases Image segmentation Machine learning Pathology X-ray imaging |
| Title | ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases |
| URI | https://ieeexplore.ieee.org/document/8099852 |
| WOSCitedRecordID | wos000418371403058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6QePCECsZ3evBoYZ99eBQkHgwhgMqNdLttIOhCWDDyJ_zNTssCFy_emuk2u-l055t2ZvohdGchmnlJTLQfMxLRWBOeRJqo1NAoBRc5MtKRTbBOhw-HoltC97taGK21Sz7Tddt0sfx0plb2qKzBwZ3hMRjcA8bYplZrd54Swk6Gil0EIbDsKy7SSUNChS_292s2mm_dnk3qYvXQ5TnvWVUcqLQr__ucY1TbV-fh7g53TlBJZ6eoUriTuPhZcxBtGRu2sir6aVp6rCHpyTV_wFvOENIHRWns-rDrxC25lBbgsMxS_AiDx59yMc3xLMPvWk4_1qS_mlszk8MrHbGmTTlyWnZDXixEFiWeeGawrUOB1mAMK-4btzZRobyGXttPg-YzKRgZyASQfkkYOJdxYvfTJpBGGkUVuBuCp17IaWhEomUSSU8prnw_TBOwpMZLOWzSOHhugQrPUDmbZfrc1opzeFwJoxITaWGECBLNJA8iyjkAyAWq2hkfzTeXboyKyb78W3yFjqxCN3m016i8XKz0DTpUX8tJvrh1K-UX3G--lA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4ImugJFYy_7cGjBbZ1W-tRkGhEQgCVG-m6NhB0EAZG_gn_Zl_LgIsXb83rmi193fte-97rh9CNgeiwGvlEOX5IaOArwiKqiIx1QGNwkakWlmwibLVYv8_bOXS7qYVRStnkM1U2TRvLjydyYY7KKgzcGeaDwd3xKXWdVbXW5kTFg71MwDcxBNfwr9hYZ-CRgDt8e8NmpfbW7pi0rrDs2UznLa-KhZVG4X8fdIBK2_o83N4gzyHKqeQIFTKHEme_awqiNWfDWlZEPzVDkNUnHbFkd3jNGkK6oCqFbR-2nbgu5sJAHBZJjO9h8PBTzMYpniT4XYnxx5J0F1NjaFJ4paXWNElHVs92SNOAZFbkiScam0oUaPWGsOa-cX0VF0pL6LXx0Ks9koyTgYwA6-ckBPfSj8yOWrtCCy0DCQ4HZ3HVY4GneaREREVVSiYdx4sjsKW6GjPYpjHw3VzpHaN8MknUiakWZ_C45FpGmiquOXcjFQrm0oAxgJBTVDQzPpiurt0YZJN99rf4Gu099l6ag-ZT6_kc7RvlrrJqL1B-PluoS7Qrv-ajdHZlV80v7v3B2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=ChestX-Ray8%3A+Hospital-Scale+Chest+X-Ray+Database+and+Benchmarks+on+Weakly-Supervised+Classification+and+Localization+of+Common+Thorax+Diseases&rft.au=Xiaosong+Wang&rft.au=Yifan+Peng&rft.au=Le+Lu&rft.au=Zhiyong+Lu&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=3462&rft.epage=3471&rft_id=info:doi/10.1109%2FCVPR.2017.369&rft.externalDocID=8099852 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |