Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm

Clustering analysis method is one of the main analytical methods in data mining, the method of clustering algorithm will influence the clustering results directly. This paper discusses the standard k-means clustering algorithm and analyzes the shortcomings of standard k-means algorithm, such as the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 Third International Symposium on Intelligent Information Technology and Security Informatics s. 63 - 67
Hlavní autoři: Shi Na, Liu Xumin, Guan Yong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2010
Témata:
ISBN:9781424467303, 1424467306
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Clustering analysis method is one of the main analytical methods in data mining, the method of clustering algorithm will influence the clustering results directly. This paper discusses the standard k-means clustering algorithm and analyzes the shortcomings of standard k-means algorithm, such as the k-means clustering algorithm has to calculate the distance between each data object and all cluster centers in each iteration, which makes the efficiency of clustering is not high. This paper proposes an improved k-means algorithm in order to solve this question, requiring a simple data structure to store some information in every iteration, which is to be used in the next interation. The improved method avoids computing the distance of each data object to the cluster centers repeatly, saving the running time. Experimental results show that the improved method can effectively improve the speed of clustering and accuracy, reducing the computational complexity of the k-means.
ISBN:9781424467303
1424467306
DOI:10.1109/IITSI.2010.74