Incremental sampling-based algorithm for risk-aware planning under motion uncertainty
This paper considers the problem of motion planning for linear systems subject to Gaussian motion noise and proposes a risk-aware planning algorithm: CC-RRT*-D. The proposed CC-RRT*-D employs the chance-constraint approximation and leverages the asymptotically optimal property of RRT* framework to c...
Gespeichert in:
| Veröffentlicht in: | Proceedings - IEEE International Conference on Robotics and Automation S. 2051 - 2058 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2014
|
| Schlagworte: | |
| ISSN: | 1050-4729 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper considers the problem of motion planning for linear systems subject to Gaussian motion noise and proposes a risk-aware planning algorithm: CC-RRT*-D. The proposed CC-RRT*-D employs the chance-constraint approximation and leverages the asymptotically optimal property of RRT* framework to compute risk-aware and asymptotically optimal trajectories. By explicitly considering the state dependence for prior state estimate, the over-conservative problem of chance-constraint approximation can be provably solved. Computational experiment results show that CC-RRT*-D is efficient and robust compared with related algorithms. The real-time experiment on an autonomous vehicle shows that our proposed algorithm is applicable to real-time obstacle avoidance. |
|---|---|
| ISSN: | 1050-4729 |
| DOI: | 10.1109/ICRA.2014.6907131 |