Adaptive Weighted Aggregation 2: More scalable AWA for multiobjective function optimization

Adaptive Weighted Aggregation (AWA) is a frame work of multi-starting optimization methods based on scalarization for solving multiobjective function optimization problems. It progressively generates new solutions to refine the approximation of the Pareto set or the Pareto front by the subdivision,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE Congress of Evolutionary Computation (CEC) s. 2375 - 2382
Hlavní autoři: Hamada, Naoki, Nagata, Yuichi, Kobayashi, Shigenobu, Ono, Isao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2011
Témata:
ISBN:1424478340, 9781424478347
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Adaptive Weighted Aggregation (AWA) is a frame work of multi-starting optimization methods based on scalarization for solving multiobjective function optimization problems. It progressively generates new solutions to refine the approximation of the Pareto set or the Pareto front by the subdivision, and iteratively estimates the appropriate weight vector for scalarization in each search by the weight adaptation. Our recent study shows that AWA's solution set combinatorially increases for the number of objectives. In this paper, we propose a new subdivision and weight adaptation scheme of AWA to improve its scalability. Numerical experiments show the effectiveness of the proposed method.
ISBN:1424478340
9781424478347
ISSN:1089-778X
DOI:10.1109/CEC.2011.5949911