Randomized Nonnegative Tensor Factorization for Feature Extraction from High-dimensional Signals

Tensor decomposition methods are well-known tools for multilinear feature extraction from multi-way arrays with many important applications in signal processing and machine learning. Nonnegative Tensor Factorization (NTF) is a particular case of such methods, mostly addressed for processing nonnegat...

Full description

Saved in:
Bibliographic Details
Published in:2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP) pp. 1 - 5
Main Authors: Zdunek, Rafal, Fonal, Krzysztof
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2018
Subjects:
ISSN:2157-8702
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tensor decomposition methods are well-known tools for multilinear feature extraction from multi-way arrays with many important applications in signal processing and machine learning. Nonnegative Tensor Factorization (NTF) is a particular case of such methods, mostly addressed for processing nonnegative multi-way arrays, such as hyperspectral observations or a set of images. One of the most efficient algorithms for NTF is the Hierarchical Alternating Least Squares (HALS) algorithm that belongs to a family of coordinate gradient descent updates. Despite its very good numerical properties, its computational complexity is quite large for large-scale datasets. In this study, we propose the randomized extension of the HALS, which considerably decreases its computational complexity with respect to the standard HALS. The numerical experiments, performed for various large-scale observations, confirm that the proposed algorithm is much faster than the standard one at the cost of slightly decreased performance.
AbstractList Tensor decomposition methods are well-known tools for multilinear feature extraction from multi-way arrays with many important applications in signal processing and machine learning. Nonnegative Tensor Factorization (NTF) is a particular case of such methods, mostly addressed for processing nonnegative multi-way arrays, such as hyperspectral observations or a set of images. One of the most efficient algorithms for NTF is the Hierarchical Alternating Least Squares (HALS) algorithm that belongs to a family of coordinate gradient descent updates. Despite its very good numerical properties, its computational complexity is quite large for large-scale datasets. In this study, we propose the randomized extension of the HALS, which considerably decreases its computational complexity with respect to the standard HALS. The numerical experiments, performed for various large-scale observations, confirm that the proposed algorithm is much faster than the standard one at the cost of slightly decreased performance.
Author Zdunek, Rafal
Fonal, Krzysztof
Author_xml – sequence: 1
  givenname: Rafal
  surname: Zdunek
  fullname: Zdunek, Rafal
  organization: Wroclaw University of Science and Technology, Faculty of Electronics, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
– sequence: 2
  givenname: Krzysztof
  surname: Fonal
  fullname: Fonal, Krzysztof
  organization: Wroclaw University of Science and Technology, Faculty of Electronics, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland
BookMark eNotkM1OAjEYRavRRESegE1fYLC_tF0aAkJC1DgYl9iZ-Yo1Tms6o0Ge3qqsTnJu7l3cS3QWYgCExpRMKCXmevVclquHCSNUT7TgRkhygkZGaSq5nk6NMuwUDRiVqtCKsAs06ro3QghnlCrGB-jl0YYmtv4ADb6LIcDO9v4L8AZCFxNe2LqPyR-yjAG7XwO2_0yA5_s-5fBPp9jipd-9Fo1vcy87-45Lv8vortC5y4DRkUP0tJhvZstifX-7mt2sC88E7QuqLDNGVxWH2kgpWEWtEa5mOTUN0w2zfAqsEtI5RSgoJWRDZG2pI7VyhA_R-H_XA8D2I_nWpu_t8RP-A6QTWPE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IWSSIP.2018.8439450
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538669792
153866979X
EISSN 2157-8702
EndPage 5
ExternalDocumentID 8439450
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i241t-17a2998bb3ec95542b1a94fc22419d28d2a36e2b45ff701e7745d05ca1f0c7f03
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451277200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:58:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i241t-17a2998bb3ec95542b1a94fc22419d28d2a36e2b45ff701e7745d05ca1f0c7f03
PageCount 5
ParticipantIDs ieee_primary_8439450
PublicationCentury 2000
PublicationDate 2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06
PublicationDecade 2010
PublicationTitle 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP)
PublicationTitleAbbrev IWSSIP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211723
ssj0002684709
Score 1.6692787
Snippet Tensor decomposition methods are well-known tools for multilinear feature extraction from multi-way arrays with many important applications in signal...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational complexity
Correlation
Dimensionality Reduction
Hierarchical Alternating Least Squares Algorithm
Machine learning algorithms
Matrix decomposition
Multilinear Feature Extraction
Nonnegative Tensor Factorization
Randomized Approximation Algorithm
Signal processing algorithms
Symmetric matrices
Tensile stress
Title Randomized Nonnegative Tensor Factorization for Feature Extraction from High-dimensional Signals
URI https://ieeexplore.ieee.org/document/8439450
WOSCitedRecordID wos000451277200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwGMbDHB704scmfpODR7u1TbokZ9lQkDF04m4zn6MHV6mdiH-9edM6Fbx4a3MoJYE-edPn-b0IXRCXCWpJ5ldA0YhmLI0kkeCZYs4R5jTnISh8y8ZjPpuJSQtdrrMw1tpgPrM9uAz_8k2hV3BU1ucQ44QCfYOxQZ3VWp-nALXkC0UG98RXNiwlDWgoiUX_5tF_nybg5uK95km_WqoERRnt_O9ddlH3O5qHJ2vR2UMtu9xH2z-ogh30dCeXpnjOP6zBY_CxLALcG099xVqUeBQ67DTxS-xgxAa6Jx6-V2Wdc8CQOsHgAYkM4P9rdAe-zxeAW-6ih9FwenUdNY0UotwLdBUlTHrV4UoRq4XfP6QqkYI6DfItTMpNKsnApopmzrE4sX5LmJk40zJxsWYuJgeovSyW9hBhQxTzku-sL6mppalkTAs64NoopbkWR6gDczV_qVkZ82aajv8ePkFbsBy19eoUtatyZc_Qpn6r8tfyPCzwJ3oEpt8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWqggQsPFrEGw-MpE1sp7Zn1KqIElVQRLeS-FFlIEUhRYivxzcJBSQWNtuDZflKPr72OecidEFtKJmhoYtAwjwWcuLFNAbOFLeWcquEKIXCIx5FYjqV4wa6XGlhjDEl-cx0oFn-5euFWsJTWVeAjBMS9LWQMeJXaq3Viwr4lnyZkUGfutyGE1pbDQW-7F4_uhNqDHwu0ann-lVUpcSUwfb_VrOD2t_iPDxewc4uaphsD2398BVsoae7ONOL5_TDaBwBk2Ve2nvjictZFzkelDV2agEmtjBiSn9P3H8v8krpgEF3goEF4mkoAFCZd-D7dA6Gy230MOhProZeXUrBSx1EF17AY4c7IkmoUdLdIEgSxJJZBQAuNRGaxLRnSMJCa7kfGHcpDLUfqjiwvuLWp_uomS0yc4Cwpgl3oG-NS6qZYSTmXEnWE0oniRJKHqIW7NXspXLLmNXbdPT38DnaGE5uR7PRdXRzjDYhNBUR6wQ1i3xpTtG6eivS1_ysDPYnVRaqJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+25th+International+Conference+on+Systems%2C+Signals+and+Image+Processing+%28IWSSIP%29&rft.atitle=Randomized+Nonnegative+Tensor+Factorization+for+Feature+Extraction+from+High-dimensional+Signals&rft.au=Zdunek%2C+Rafal&rft.au=Fonal%2C+Krzysztof&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2157-8702&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIWSSIP.2018.8439450&rft.externalDocID=8439450