Unsupervised Clustering of HRV Features Reveals Preictal Changes in Human Epilepsy

Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Jg. 2020; S. 698 - 701
Hauptverfasser: Gagliano, L., Assi, E. Bou, Toffa, D. H., Nguyen, D. K., Sawan, M.
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2020
ISSN:2694-0604, 1558-4615, 2694-0604
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonomous nervous system, notably cardiac activity measured in heart rate variability (HRV), have also been associated with epileptic seizures. This work proposes an unsupervised clustering technique which aims to automatically identify preictal HRV changes in 9 patients who underwent simultaneous electrocardiography (ECG) and intracranial EEG presurgical monitoring at the University of Montreal Hospital Center. A 2-class k-means clustering combined with a quantitative preictal HRV change detection technique were adopted in a subject- and seizure-specific manner. Results indicate inter and intra-patient variability in preictal HRV changes (between 3.5 and 6.5 min before seizure onset) and a statistically significant negative correlation between the time of change in HRV state and the duration of seizures (p<0.05). The presented findings show promise for new avenues of research regarding multimodal seizure prediction and unsupervised preictal time assessment.Clinical Relevance- This study proposed an unsupervised technique for quantitatively identifying preictal HRV changes which can be eventually used to implement an ECG-based seizure forecasting algorithm.
AbstractList Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonomous nervous system, notably cardiac activity measured in heart rate variability (HRV), have also been associated with epileptic seizures. This work proposes an unsupervised clustering technique which aims to automatically identify preictal HRV changes in 9 patients who underwent simultaneous electrocardiography (ECG) and intracranial EEG presurgical monitoring at the University of Montreal Hospital Center. A 2-class k-means clustering combined with a quantitative preictal HRV change detection technique were adopted in a subject- and seizure-specific manner. Results indicate inter and intra-patient variability in preictal HRV changes (between 3.5 and 6.5 min before seizure onset) and a statistically significant negative correlation between the time of change in HRV state and the duration of seizures (p<0.05). The presented findings show promise for new avenues of research regarding multimodal seizure prediction and unsupervised preictal time assessment.Clinical Relevance- This study proposed an unsupervised technique for quantitatively identifying preictal HRV changes which can be eventually used to implement an ECG-based seizure forecasting algorithm.
Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonomous nervous system, notably cardiac activity measured in heart rate variability (HRV), have also been associated with epileptic seizures. This work proposes an unsupervised clustering technique which aims to automatically identify preictal HRV changes in 9 patients who underwent simultaneous electrocardiography (ECG) and intracranial EEG presurgical monitoring at the University of Montreal Hospital Center. A 2-class k-means clustering combined with a quantitative preictal HRV change detection technique were adopted in a subject- and seizure-specific manner. Results indicate inter and intra-patient variability in preictal HRV changes (between 3.5 and 6.5 min before seizure onset) and a statistically significant negative correlation between the time of change in HRV state and the duration of seizures (p<0.05). The presented findings show promise for new avenues of research regarding multimodal seizure prediction and unsupervised preictal time assessment.Clinical Relevance- This study proposed an unsupervised technique for quantitatively identifying preictal HRV changes which can be eventually used to implement an ECG-based seizure forecasting algorithm.Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonomous nervous system, notably cardiac activity measured in heart rate variability (HRV), have also been associated with epileptic seizures. This work proposes an unsupervised clustering technique which aims to automatically identify preictal HRV changes in 9 patients who underwent simultaneous electrocardiography (ECG) and intracranial EEG presurgical monitoring at the University of Montreal Hospital Center. A 2-class k-means clustering combined with a quantitative preictal HRV change detection technique were adopted in a subject- and seizure-specific manner. Results indicate inter and intra-patient variability in preictal HRV changes (between 3.5 and 6.5 min before seizure onset) and a statistically significant negative correlation between the time of change in HRV state and the duration of seizures (p<0.05). The presented findings show promise for new avenues of research regarding multimodal seizure prediction and unsupervised preictal time assessment.Clinical Relevance- This study proposed an unsupervised technique for quantitatively identifying preictal HRV changes which can be eventually used to implement an ECG-based seizure forecasting algorithm.
Author Assi, E. Bou
Gagliano, L.
Sawan, M.
Nguyen, D. K.
Toffa, D. H.
Author_xml – sequence: 1
  givenname: L.
  surname: Gagliano
  fullname: Gagliano, L.
  organization: Polytechnique Montréal,Institute of Biomedical Engineering,QC,Canada
– sequence: 2
  givenname: E. Bou
  surname: Assi
  fullname: Assi, E. Bou
  organization: University of Montreal,University of Montreal Hospital Center,Montreal,QC,Canada
– sequence: 3
  givenname: D. H.
  surname: Toffa
  fullname: Toffa, D. H.
  organization: University of Montreal,University of Montreal Hospital Center,Montreal,QC,Canada
– sequence: 4
  givenname: D. K.
  surname: Nguyen
  fullname: Nguyen, D. K.
  organization: University of Montreal,University of Montreal Hospital Center,Montreal,QC,Canada
– sequence: 5
  givenname: M.
  surname: Sawan
  fullname: Sawan, M.
  organization: Polytechnique Montréal,Institute of Biomedical Engineering,QC,Canada
BookMark eNotkM9LwzAcxaNMcJv-BYLk6KUzafOjOWrpnDBRhvNaYvLNjHRpbdrB_nsL2-k9eJ_3Dm-GJqEJgNA9JQtKiXos354Lxka3SElKFopKLjN1gWZUpjmlShF6iaaU8zxhgvIJmqZCsYQIwq7RLMZfMtYIp1O02YY4tNAdfASLi3qIPXQ-7HDj8GrzhZeg-6GDiDdwAF1H_NGBN72ucfGjw24MfMCrYa8DLltfQxuPN-jKjSTcnnWOtsvys1gl6_eX1-Jpnfg0E31inc2MNcoZbYxQkmlHCFjiLORGghDcEchBSeAglYZvbjlwJiXjVmmpsjl6OO22XfM3QOyrvY8G6loHaIZYpYzlOcuyXI7o3Qn1AFC1nd_r7lidb8v-Ad1lYys
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7X8
DOI 10.1109/EMBC44109.2020.9175739
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728119901
9781728119908
EISSN 1558-4615
2694-0604
EndPage 701
ExternalDocumentID 9175739
Genre orig-research
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
7X8
ID FETCH-LOGICAL-i236t-dfd3cdc9fcacc6974af00ed0fde8c7e665f0e8e97e5e79aeb5d5e547745d9a793
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621592201010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2694-0604
IngestDate Thu Oct 02 15:02:41 EDT 2025
Wed Aug 27 02:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i236t-dfd3cdc9fcacc6974af00ed0fde8c7e665f0e8e97e5e79aeb5d5e547745d9a793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2448843387
PQPubID 23479
PageCount 4
ParticipantIDs ieee_primary_9175739
proquest_miscellaneous_2448843387
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
PublicationTitleAbbrev EMBC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssib061542107
ssib053545923
ssib042469959
Score 2.1327116
Snippet Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 698
Title Unsupervised Clustering of HRV Features Reveals Preictal Changes in Human Epilepsy
URI https://ieeexplore.ieee.org/document/9175739
https://www.proquest.com/docview/2448843387
Volume 2020
WOSCitedRecordID wos000621592201010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFA5Odtgu-6Fj7odksOOqaWua5DpRvExE5vBWYvIKhVHFWmH__V7azg22y26BkFLeS_K9L8n3HiGPkgc68lfM076T5CCoeatEgpdwDiy0gTJBVWxCTKdyuVSzBnk6aGEAoHx8Bj3XLO_y7doU7qisj9SCi1AdkSMhRKXVOpArN7tqBbDPVH_08jxEpGdOixKwXj2yLqHya98twWR89r_fOCftb1UenR3w5oI0ILskpz8SCrbIfJHlxcYt_xwsHb4XLg0C9tB1QifzN-oCvgIJNp3DHiPEHL8HqcH4m1Yqg5ymGS3P9elog_vFJv9ok8V49DqceHXVBC8Nwmjn2cSGxhqVGG1MhHRBJ4yBZYkFaQREEU8YSFACOAilYcUtBz7AMJBbpXG5XpFmts7gmtAI2StnvtZKq4EGpmTkG8R05UOoQasOaTnrxJsqMUZcG6ZDHr7MG-NkdTcQOoN1kccYS0g5QFYsbv4eektOnL-q97B3pLnbFnBPjs1-l-bbLvp9Kbul3z8Bg5qurw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XFyybejeCjdeklbfPqmEzchgwnvpUsOYWBdGNdB_57T9o6BX3xrVASwklyzvcl-c4BuImFp0J3zB3lWkkOBTVnnMbopEIg940ntVcVm4gGg_jtTT6vwe1KC4OI5eMzvLOf5V2-merCHpW1iFqIyJfrsCmCwHMrtdaKXtn1VWuAXS5bnf59m2I9t2oUj9_VbesiKr88bxlOHvb-N5B9aH7r8tjzKuIcwBpmh7D7I6VgA4ajLC9m1gHkaFj7vbCJEOgPm6asO3xlFvIVRLHZEJeEEXPqDyeaEDirdAY5m2SsPNlnnRl5jFn-0YTRQ-el3XXqugnOxPPDhWNS42ujZaqV1iERBpVyjoanBmMdYRiKlGOMMkKBkVQ4FkagCAgICiMVbdgj2MimGR4DC4m_Cu4qJZUMFHIZh66mqC5d9BUqeQINa51kVqXGSGrDnMD1l3kTWq72DkJlOC3yhNBEHAfEi6PTv5tewXb3pd9Leo-DpzPYsXNXvY49h43FvMAL2NLLxSSfX5az_wmjSLEO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Unsupervised+Clustering+of+HRV+Features+Reveals+Preictal+Changes+in+Human+Epilepsy&rft.au=Gagliano%2C+L.&rft.au=Assi%2C+E.+Bou&rft.au=Toffa%2C+D.+H.&rft.au=Nguyen%2C+D.+K.&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=698&rft.epage=701&rft_id=info:doi/10.1109%2FEMBC44109.2020.9175739&rft.externalDocID=9175739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon