Subject-Specific EMG Modeling with Multiple Muscles: A Preliminary Study
Modeling of surface electromyographic (EMG) signal has been proven valuable for signal interpretation and algorithm validation. However, most EMG models are currently limited to single muscle, either with numerical or analytical approaches. Here, we present a preliminary study of a subject-specific...
Gespeichert in:
| Veröffentlicht in: | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Jg. 2020; S. 740 - 743 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2020
|
| ISSN: | 2694-0604, 1558-4615, 2694-0604 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Modeling of surface electromyographic (EMG) signal has been proven valuable for signal interpretation and algorithm validation. However, most EMG models are currently limited to single muscle, either with numerical or analytical approaches. Here, we present a preliminary study of a subject-specific EMG model with multiple muscles. Magnetic resonance (MR) technique is used to acquire accurate cross section of the upper limb and contours of five muscle heads (biceps brachii, brachialis, lateral head, medial head, and long head of triceps brachii). The MR image is adjusted to an idealized cylindrical volume conductor model by image registration. High-density surface EMG signals are generated for two movements - elbow flexion and elbow extension. The simulated and experimental potentials were compared using activation maps. Similar activation zones were observed for each movement. These preliminary results indicate the feasibility of the multi-muscle model to generate EMG signals for complex movements, thus providing reliable data for algorithm validation. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2694-0604 1558-4615 2694-0604 |
| DOI: | 10.1109/EMBC44109.2020.9175286 |