A note on S(t) and the zeros of the Riemann zeta-function

Let π S(t) denote the argument of the Riemann zeta-function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best currently known bounds for S(t) and for the change of S(t) in intervals. We then deduce estimates for the largest multiplicity of a zero of the zeta...

Full description

Saved in:
Bibliographic Details
Published in:The Bulletin of the London Mathematical Society Vol. 39; no. 3; pp. 482 - 486
Main Authors: Goldston, D. A., Gonek, S. M.
Format: Journal Article
Language:English
Published: Oxford University Press 01.06.2007
ISSN:0024-6093, 1469-2120
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let π S(t) denote the argument of the Riemann zeta-function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best currently known bounds for S(t) and for the change of S(t) in intervals. We then deduce estimates for the largest multiplicity of a zero of the zeta-function, and for the largest gap between the zeros.
AbstractList Let π S(t) denote the argument of the Riemann zeta-function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best currently known bounds for S(t) and for the change of S(t) in intervals. We then deduce estimates for the largest multiplicity of a zero of the zeta-function, and for the largest gap between the zeros.
Author Gonek, S. M.
Goldston, D. A.
Author_xml – sequence: 1
  givenname: D. A.
  surname: Goldston
  fullname: Goldston, D. A.
  email: goldston@math.sjsu.edu
  organization: Department of MathematicsSan Jose State UniversitySan Jose, CA 95192USAgoldston@math.sjsu.edu
– sequence: 2
  givenname: S. M.
  surname: Gonek
  fullname: Gonek, S. M.
  email: goldston@math.sjsu.edu
  organization: Department of MathematicsUniversity of RochesterRochester, NY 14627USAgonek@math.rochester.edu
BookMark eNo9j81KAzEYRYMo2FZXvkCWuoj98tNkZlmrtUpFsArFTcjPNzjaycjMiNant7Xi6nIvnAunT_ZTnZCQEw7nnHMx9KuqHfpYgRR7pMeVzpngAvZJD0AopiGXh6Tftq8AXILhPZKPaao7pHWii9PujLoUafeC9BubuqV18VseSqxcSpuxc6z4SKEr63REDgq3avH4LwfkaXr1OJmx-f31zWQ8Z6WQI8FU5jA6pwK4TPvgeWYKFYwQceTByaBjwCgCD9qgctEDehmVMbnkQiuMckD47vezXOHavjdl5Zq15WC3ynarbHfK9mJ-twCViQ3DdkzZdvj1z7jmzWojzcjOls9WTS-z5a0SdiF_APEAXUk
ContentType Journal Article
Copyright 2007 London Mathematical Society
Copyright_xml – notice: 2007 London Mathematical Society
DBID BSCLL
DOI 10.1112/blms/bdm032
DatabaseName Istex
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-2120
EndPage 486
ExternalDocumentID BLMS0482
ark_67375_HXZ_4FD8XJ42_S
Genre article
GroupedDBID --Z
-~X
.2P
.I3
0R~
1OB
1OC
1TH
23N
33P
4.4
5GY
5VS
6TJ
70D
AAGQS
AAHQN
AAIJN
AAJKP
AAMMB
AAMNL
AAMVS
AANLZ
AAOGV
AAPXW
AASGY
AASVR
AAUQX
AAVAP
AAXRX
AAYCA
AAZKR
ABCQX
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABGDZ
ABGNP
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPTD
ABQLI
ABSMQ
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCZN
ACFRR
ACGFS
ACIPB
ACNCT
ACPOU
ACQPF
ACUKT
ACUTJ
ACVCV
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHKW
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADXAS
ADZMN
ADZXQ
AECKG
AEFGJ
AEGPL
AEIGN
AEJOX
AENEX
AEPUE
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFWVQ
AFZJQ
AGHNM
AGKEF
AGMDO
AGQPQ
AGSYK
AGXDD
AGYGG
AHBTC
AHXPO
AI.
AIDQK
AIDYY
AIJHB
AIQQE
AITYG
AIURR
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMVHM
AMYDB
APJGH
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
BSCLL
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
DU5
D~K
E.L
EBS
EE~
EJD
F9B
FEDTE
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
KOP
KSI
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NGC
O9-
OHT
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROZ
RW1
RXO
SUPJJ
TJP
TN5
UPT
VH1
WIH
WIK
WOHZO
WXSBR
X7H
XKC
YYP
ZY4
ZZTAW
~91
ID FETCH-LOGICAL-i2352-48aedaa4c0a86bcb187f4c722d5b0a3c6dced2c1c67e4adb0eb3d477931264ed3
IEDL.DBID DRFUL
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247860400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-6093
IngestDate Wed Aug 20 07:27:51 EDT 2025
Sat Sep 20 11:01:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i2352-48aedaa4c0a86bcb187f4c722d5b0a3c6dced2c1c67e4adb0eb3d477931264ed3
Notes ArticleID:bdm032
2000 Mathematics Subject Classification 11M26.
ark:/67375/HXZ-4FD8XJ42-S
istex:B3F619E9F5DAA0F420BCF623D15C2E223871CA47
2000
Mathematics Subject Classification
11M26.
The research of both authors was supported in part by a National Science Foundation FRG grant (DMS 0244660). The first author was also partially supported by NSF grant DMS 0300563, and the second author by NSF grant DMS 0201457. The authors wish to thank the Isaac Newton Institute for its hospitality during their work on this paper, and also the American Institute of Mathematics.
PageCount 5
ParticipantIDs wiley_primary_10_1112_blms_bdm032_BLMS0482
istex_primary_ark_67375_HXZ_4FD8XJ42_S
PublicationCentury 2000
PublicationDate June 2007
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: June 2007
PublicationDecade 2000
PublicationTitle The Bulletin of the London Mathematical Society
PublicationYear 2007
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0013071
Score 1.9586715
Snippet Let π S(t) denote the argument of the Riemann zeta-function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best...
Let π S(t) denote the argument of the Riemann zeta‐function at the point 1/2 + it. Assuming the Riemann hypothesis, we sharpen the constant in the best...
SourceID wiley
istex
SourceType Publisher
StartPage 482
Title A note on S(t) and the zeros of the Riemann zeta-function
URI https://api.istex.fr/ark:/67375/HXZ-4FD8XJ42-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fblms%2Fbdm032
Volume 39
WOSCitedRecordID wos000247860400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-2120
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013071
  issn: 0024-6093
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kdaEL32J9MQsRFUIzk0kmxVW1hiJtkdZCcDPMK1DURNoo4spP8Bv9EmeSWHEpLpPcDOHkPs6dx70AHJmYyaWvtRMqLBySqMDhSHiOr8NAk6Tl8pYomk3QwSCM49ZN1efUnoUp60PMJ9ysZRT-2ho4F1UXEmSLhooHOxcRCfXoesYH17HRXb8G6p1hNO79LCS4tGyah4kTmOy9OqJnhmjaAZrl64aZWlBffzPUIsREq__-uDWwUrFL2C7VYR0s6HQDLPfnpVlnm-C8DdMs1zBL4egkP4U8VdA8hm_axEuYJcXFcGLk09TczPnn-4cNfvYHboFxdHV72XWqDgrOBBtm5ZCQa8U5kS4PAyEFCmlCJMVY-cLlngyU1ApLJAOqCVfCNam1ItTYLDJESStvG9TSLNU7AFrXwLEMJRGCIFtTRtLE8yRShmIowhvguICQPZVVMhif3ttNY9Rn3fiOkagTxtcEs1EDnBXIzQXLNAQzixkrEWMXvf7I-Ba8-xfhPbD0vZvPRfuglk-f9QFYlC_5ZDY9rDTjC4J5v-g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kFdSDb7E-9yCiQmiy2SYpnqo1VG2L9AHFy7KvQFFTaaOIJ3-Cv9Ff4mwSqx7FYzaTZZnM45vZ3RmEDsBnclnR2goUERaNlGdxR7hWRQeeplHV5lWRNpvw2-1gMKje_LjFn9WHmCbcjGak9toouElI51puqoaKe5OMCIV6sF0wwkUKogQyXqx3wn7zeyfB9rOueYRaHoTv-R09mKJsJihnnwM0NVx9-Q1RUx8TLv1_dctoMceXuJYJxAqa0fEqWmhNi7NO1tBpDcejRONRjLtHyTHmscLwGr9q8Jh4FKUPnSHQxzEMJvzj7d24P_ML11E_vOidN6y8h4I1JICtLBpwrTin0uaBJ6RwAj-i0idEVYTNXekpqRWRjvR8TbkSNgTXivqgtQ5AJa3cDVSIR7HeRNgYB05kIKkQ1DFVZaQfua50FIAMRXkJHaY8ZI9ZnQzGx3fm2JhfYY3BLaNhPRhcUcK6JXSSsm5KmAUihBmesYxj7KzZ6oJ1IVt_Id5Hc41eq8mal-3rbTT_dbbPdnZQIRk_6V00K5-T4WS8l4vJJwj2w9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kFdGDb7E-9yCiQmiy2WRTPFVr8NGW0looXpZ9BYqalDaKePIn-Bv9Je4msepRPGYzWZbJzsw3-_gGgAMdM5nwlLICibiFI-lbzOGu5anAVziq2azGs2ITpN0OBoNa58ct_pwfYrrgZiwj89fGwNVIRoWVG9ZQ_mAWI0IuH21XO-EyNoVkSqDc6Ib95vdOgk3yqnkIW75O34s7erqLqumgmn-uoanR6stviJrFmHDp_6NbBosFvoT1fEKsgBkVr4KF1pScdbIGTuswTlIFkxj2jtJjyGIJ9Wv4qnTEhEmUPXSHWj6OdWPKPt7eTfgzv3Ad9MOL2_NLq6ihYA2RxlYWDpiSjGFhs8DngjsBibAgCEmP28wVvhRKIuEInyjMJLd1ci0x0VbraKikpLsBSnESq00AjXNgSAQCc44dwyojSOS6wpEaZEjMKuAw0yEd5TwZlI3vzbEx4tHLwR3FYSMYXGNEexVwkqluKpgnIogandFcY_Ss2epp74K2_iK8D-Y6jZA2r9o322D-62if7eyAUjp-UrtgVjynw8l4r5gln-1dw1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+S%28t%29+and+the+zeros+of+the+Riemann+zeta-function&rft.jtitle=The+Bulletin+of+the+London+Mathematical+Society&rft.au=Goldston%2C+D.+A.&rft.au=Gonek%2C+S.+M.&rft.date=2007-06-01&rft.pub=Oxford+University+Press&rft.issn=0024-6093&rft.eissn=1469-2120&rft.volume=39&rft.issue=3&rft.spage=482&rft.epage=486&rft_id=info:doi/10.1112%2Fblms%2Fbdm032&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_4FD8XJ42_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6093&client=summon