A Randomised Ensemble Learning Approach for Multiclass Motor Imagery Classification Using Error Correcting Output Coding

Common Spectral Pattern (CSP) algorithm remains predominant for feature extraction from multichannel EEG motor imagery data. However, multiclass classification of from this featureset has been a challenging job. Different approaches have been proposed to be applied on featureset of different EEG sub...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Ročník 2018; s. 5081 - 5084
Hlavní autori: Bera, Sutanu, Roy, Rinku, Sikdar, Debdeep, Kar, Aupendu, Mukhopadhyay, Rupsha, Mahadevappal, Manjunatha
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2018
Predmet:
ISSN:1557-170X, 2694-0604, 1558-4615, 2694-0604
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Common Spectral Pattern (CSP) algorithm remains predominant for feature extraction from multichannel EEG motor imagery data. However, multiclass classification of from this featureset has been a challenging job. Different approaches have been proposed to be applied on featureset of different EEG subbands to achieve significant classification accuracy. Ensemble learning is very effective in this context to achieve higher accuracy in Brain-Computer Interface (BCI) domain. In this study, we have proposed enhanced classification algorithms to achieve higher classification accuracies. The methods were evaluated against the motor imagery data from Dataset 2a of the publicly available BCI Competition IV (2008). This dataset consists of 22 channels EEG data of 9 subjects for four different movements. A tree based ensemble approach for supervised classification, Extra-Trees algorithm, has been proposed in this paper and also evaluated for its efficacy on this dataset to classify between left hand and right hand movement imaginations. Moreover, this classifier has its inherent capability to select optimum features. Furthermore, in this paper an extension of the binary classification into multiclass domain is also implemented with error correcting output codes (ECOC) approach using the same dataset. Subject-specific frequency bands α (8-12Hz) and β (12-30Hz) along with HG (70-100Hz) were considered to extract CSP features. We have achieved an individual peak accuracy of 98% and 84% in binary class and multiclass classification respectively. Furthermore, the results yielded a mean kappa value of 0.58 across all the subjects. This kappa value is higher than of the winner of competition and also from the most of the other approaches applied in this dataset.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1557-170X
2694-0604
1558-4615
2694-0604
DOI:10.1109/EMBC.2018.8513421