Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder
It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoe...
Uloženo v:
| Vydáno v: | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Ročník 2018; s. 5652 - 5655 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2018
|
| Témata: | |
| ISSN: | 1557-170X, 2694-0604, 1558-4615, 2694-0604 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the time-domain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1557-170X 2694-0604 1558-4615 2694-0604 |
| DOI: | 10.1109/EMBC.2018.8513525 |