Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder
It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoe...
Uloženo v:
| Vydáno v: | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Ročník 2018; s. 5652 - 5655 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2018
|
| Témata: | |
| ISSN: | 1557-170X, 2694-0604, 1558-4615, 2694-0604 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the time-domain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition. |
|---|---|
| AbstractList | It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition. It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition. It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the time-domain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition. |
| Author | Xiangyang Zhu Bo Lv Xinjun Sheng |
| Author_xml | – sequence: 1 givenname: Bo surname: Lv fullname: Lv, Bo – sequence: 2 givenname: Xinjun surname: Sheng fullname: Sheng, Xinjun – sequence: 3 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30441618$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kNtKw0AQhlep2IN9ABEkl96k7mSzk81lLfUALYonvAubZFpX2mzNboS-vaGtXs3PzDcD8_VZp7IVMXYOfATA0-vp_GYyijiokZIgZCSP2DBNFEihUGCMeMx6IKUKYwTZ2eUkhIR_dFnfuS_OI84lnLKu4HEMCKrH3h_Wm9r-mGoZzLeWVlT42hTBk_ae6ip4psIuK-ONbbPNG-crci7wNpjuUFtS8PJpFj7It8G48Zaqou3VZ-xkoVeOhoc6YG-309fJfTh7vHuYjGehiQT4UAtdCkojKpGEolKWiAUmGhHLRKGMc651Ecs8JQ4oE62ggHYzEjlqiZEYsKv93faJ74acz9bGFbRa6Yps47Ko1QSQJqBa9PKANvmaymxTm7Wut9mfixa42AOGiP7HB9PiF3mzbuE |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO NPM 7X8 |
| DOI | 10.1109/EMBC.2018.8513525 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781538636466 1538636468 |
| EISSN | 1558-4615 2694-0604 |
| EndPage | 5655 |
| ExternalDocumentID | 30441618 8513525 |
| Genre | orig-research Journal Article |
| GroupedDBID | 6IE 6IF 6IH AAJGR ACGFS AFFNX ALMA_UNASSIGNED_HOLDINGS CBEJK M43 RIE RIO RNS 29F 29G 6IK 6IM IPLJI NPM 7X8 |
| ID | FETCH-LOGICAL-i231t-a3ad3e92ed6e38ed5d66c67a666d78654b0aac45b9e01657a81c123123b6a5623 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596231906028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1557-170X 2694-0604 |
| IngestDate | Thu Oct 02 07:38:18 EDT 2025 Thu Jan 02 23:10:38 EST 2025 Wed Aug 27 02:50:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i231t-a3ad3e92ed6e38ed5d66c67a666d78654b0aac45b9e01657a81c123123b6a5623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30441618 |
| PQID | 2135119718 |
| PQPubID | 23479 |
| PageCount | 4 |
| ParticipantIDs | pubmed_primary_30441618 ieee_primary_8513525 proquest_miscellaneous_2135119718 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jul |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-Jul |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference |
| PublicationTitleAbbrev | EMBC |
| PublicationTitleAlternate | Conf Proc IEEE Eng Med Biol Soc |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020051 ssj0061641 ssib061542107 ssib053545923 ssib042469959 |
| Score | 1.8623152 |
| Snippet | It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the... |
| SourceID | proquest pubmed ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 5652 |
| SubjectTerms | Electrodes Electromyography Error analysis Feature extraction Muscles Pattern recognition Wrist |
| Title | Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder |
| URI | https://ieeexplore.ieee.org/document/8513525 https://www.ncbi.nlm.nih.gov/pubmed/30441618 https://www.proquest.com/docview/2135119718 |
| Volume | 2018 |
| WOSCitedRecordID | wos000596231906028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMsPFqgPCojMZI2aRLbGaFqxdKq4qVukZ2cRZYEtQlS_z12kgYGGJA8eLFlnU--73x33wHcUh81CrKZJRVyy1MqsAS1uUUjRwqPBVzVzSbYYsFXq2DZgrumFgYRy-QzHJppGcuPs6gwX2UjjQ4Me2cb2oyxqlarca6MdtVRS8cORtP5w8QkbvFhvajunvI3kCwNyuzwf0c5gt53ZR5ZNjbnGFqYnsDBD1LBLrw1_wRkvs2qNjdJRJYlkWZKnnYZQ5meZ7LY5OaxI3lGplVHnBjJ83uiciK35L7IM8N0GeO6B6-z6cvk0aq7J1iJxmy5JVwRuxiMMabocoz9mNKIMqH9lZhx6nvSFiLyfBmgKWligjuRNmN6SCoMKjqFTpqleA4EA-Eow8ymXVdPOXpT21datoHvCo0gZB-6RkLhR0WQEdbC6cPNTtahVloTiRApZsUmHDtV_NLhfTirLqFZ7Nqecbr4xe-bXsK-udYqY_YKOvm6wGvYiz7zZLMeaM1Y8UGpGV8sv7in |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIuPMZjPIPEkW7tmqbpEaZNQ2zTBAPtVqWNK3Zp0dYi7d-TtF3hAAekHHJJFDlW_Dm2PwPcMgcVCjJdI4iQGzSKPEMwkxsstAJBXY9HZbMJdzzms5k3qcFdVQuDiHnyGbb0NI_lyyTM9FdZW6EDzd65AZsOpR2rqNaq3CutX2Xc0jK9dm_00NWpW7xVLiv7p_wNJXOT0t_732H24ei7No9MKqtzADWMD2H3B61gA96qnwIyWiVFo5t5SCY5lWZMntc5Q4maJ0G2TPVzR9KE9IqeOBLJy_s8SkmwIvdZmmiuS4mLI3jt96bdgVH2TzDmCrWlhrCFtNHroGRoc5SOZCxkrlAei3Q5c2hgChFSJ_BQFzW5gluhMmRqBExoXHQM9TiJ8RQIesKKNDebcl5pZKlNTSdSsvUcWygMETShoSXkfxQUGX4pnCbcrGXtK7XVsQgRY5It_Y5VRDAt3oST4hKqxbZJtdvFz37f9Bq2B9PR0B8-jp_OYUdfcZE_ewH1dJHhJWyFn-l8ubjK9eMLlSW7Bg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Improving+Myoelectric+Pattern+Recognition+Robustness+to+Electrode+Shift+by+Autoencoder&rft.au=Bo+Lv&rft.au=Xinjun+Sheng&rft.au=Xiangyang+Zhu&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=5652&rft.epage=5655&rft_id=info:doi/10.1109%2FEMBC.2018.8513525&rft.externalDocID=8513525 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon |