Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder

It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference Ročník 2018; s. 5652 - 5655
Hlavní autoři: Lv, Bo, Sheng, Xinjun, Zhu, Xiangyang
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2018
Témata:
ISSN:1557-170X, 2694-0604, 1558-4615, 2694-0604
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the time-domain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.
AbstractList It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.
It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.
It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the time-domain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.
Author Xiangyang Zhu
Bo Lv
Xinjun Sheng
Author_xml – sequence: 1
  givenname: Bo
  surname: Lv
  fullname: Lv, Bo
– sequence: 2
  givenname: Xinjun
  surname: Sheng
  fullname: Sheng, Xinjun
– sequence: 3
  givenname: Xiangyang
  surname: Zhu
  fullname: Zhu, Xiangyang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30441618$$D View this record in MEDLINE/PubMed
BookMark eNo9kNtKw0AQhlep2IN9ABEkl96k7mSzk81lLfUALYonvAubZFpX2mzNboS-vaGtXs3PzDcD8_VZp7IVMXYOfATA0-vp_GYyijiokZIgZCSP2DBNFEihUGCMeMx6IKUKYwTZ2eUkhIR_dFnfuS_OI84lnLKu4HEMCKrH3h_Wm9r-mGoZzLeWVlT42hTBk_ae6ip4psIuK-ONbbPNG-crci7wNpjuUFtS8PJpFj7It8G48Zaqou3VZ-xkoVeOhoc6YG-309fJfTh7vHuYjGehiQT4UAtdCkojKpGEolKWiAUmGhHLRKGMc651Ecs8JQ4oE62ggHYzEjlqiZEYsKv93faJ74acz9bGFbRa6Yps47Ko1QSQJqBa9PKANvmaymxTm7Wut9mfixa42AOGiP7HB9PiF3mzbuE
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
NPM
7X8
DOI 10.1109/EMBC.2018.8513525
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538636466
1538636468
EISSN 1558-4615
2694-0604
EndPage 5655
ExternalDocumentID 30441618
8513525
Genre orig-research
Journal Article
GroupedDBID 6IE
6IF
6IH
AAJGR
ACGFS
AFFNX
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIO
RNS
29F
29G
6IK
6IM
IPLJI
NPM
7X8
ID FETCH-LOGICAL-i231t-a3ad3e92ed6e38ed5d66c67a666d78654b0aac45b9e01657a81c123123b6a5623
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596231906028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-170X
2694-0604
IngestDate Thu Oct 02 07:38:18 EDT 2025
Thu Jan 02 23:10:38 EST 2025
Wed Aug 27 02:50:00 EDT 2025
IsPeerReviewed true
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i231t-a3ad3e92ed6e38ed5d66c67a666d78654b0aac45b9e01657a81c123123b6a5623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30441618
PQID 2135119718
PQPubID 23479
PageCount 4
ParticipantIDs pubmed_primary_30441618
ieee_primary_8513525
proquest_miscellaneous_2135119718
PublicationCentury 2000
PublicationDate 2018-Jul
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-Jul
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Conf Proc IEEE Eng Med Biol Soc
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020051
ssj0061641
ssib061542107
ssib053545923
ssib042469959
Score 1.8623152
Snippet It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5652
SubjectTerms Electrodes
Electromyography
Error analysis
Feature extraction
Muscles
Pattern recognition
Wrist
Title Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder
URI https://ieeexplore.ieee.org/document/8513525
https://www.ncbi.nlm.nih.gov/pubmed/30441618
https://www.proquest.com/docview/2135119718
Volume 2018
WOSCitedRecordID wos000596231906028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMsPFqgPCojMZI2aRLbGaFqxdKq4qVukZ2cRZYEtQlS_z12kgYGGJA8eLFlnU--73x33wHcUh81CrKZJRVyy1MqsAS1uUUjRwqPBVzVzSbYYsFXq2DZgrumFgYRy-QzHJppGcuPs6gwX2UjjQ4Me2cb2oyxqlarca6MdtVRS8cORtP5w8QkbvFhvajunvI3kCwNyuzwf0c5gt53ZR5ZNjbnGFqYnsDBD1LBLrw1_wRkvs2qNjdJRJYlkWZKnnYZQ5meZ7LY5OaxI3lGplVHnBjJ83uiciK35L7IM8N0GeO6B6-z6cvk0aq7J1iJxmy5JVwRuxiMMabocoz9mNKIMqH9lZhx6nvSFiLyfBmgKWligjuRNmN6SCoMKjqFTpqleA4EA-Eow8ymXVdPOXpT21datoHvCo0gZB-6RkLhR0WQEdbC6cPNTtahVloTiRApZsUmHDtV_NLhfTirLqFZ7Nqecbr4xe-bXsK-udYqY_YKOvm6wGvYiz7zZLMeaM1Y8UGpGV8sv7in
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIuPMZjPIPEkW7tmqbpEaZNQ2zTBAPtVqWNK3Zp0dYi7d-TtF3hAAekHHJJFDlW_Dm2PwPcMgcVCjJdI4iQGzSKPEMwkxsstAJBXY9HZbMJdzzms5k3qcFdVQuDiHnyGbb0NI_lyyTM9FdZW6EDzd65AZsOpR2rqNaq3CutX2Xc0jK9dm_00NWpW7xVLiv7p_wNJXOT0t_732H24ei7No9MKqtzADWMD2H3B61gA96qnwIyWiVFo5t5SCY5lWZMntc5Q4maJ0G2TPVzR9KE9IqeOBLJy_s8SkmwIvdZmmiuS4mLI3jt96bdgVH2TzDmCrWlhrCFtNHroGRoc5SOZCxkrlAei3Q5c2hgChFSJ_BQFzW5gluhMmRqBExoXHQM9TiJ8RQIesKKNDebcl5pZKlNTSdSsvUcWygMETShoSXkfxQUGX4pnCbcrGXtK7XVsQgRY5It_Y5VRDAt3oST4hKqxbZJtdvFz37f9Bq2B9PR0B8-jp_OYUdfcZE_ewH1dJHhJWyFn-l8ubjK9eMLlSW7Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+annual+international+conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society&rft.atitle=Improving+Myoelectric+Pattern+Recognition+Robustness+to+Electrode+Shift+by+Autoencoder&rft.au=Bo+Lv&rft.au=Xinjun+Sheng&rft.au=Xiangyang+Zhu&rft.date=2018-07-01&rft.pub=IEEE&rft.eissn=1558-4615&rft.spage=5652&rft.epage=5655&rft_id=info:doi/10.1109%2FEMBC.2018.8513525&rft.externalDocID=8513525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-170X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-170X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-170X&client=summon