Modelling underground mine ventilation characteristics using artificial neural networks
Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation...
Uloženo v:
| Vydáno v: | Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World s. 3136 - 3144 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
United Kingdom
CRC Press
2023
Taylor & Francis Group |
| Vydání: | 1 |
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation network assisted by machine learning (ML) techniques and more particularly by the use of Artificial Neural Network (ANN). The developed ANN is focusing in the prediction of NOx concentration at a selected mine site in order to model its operating characteristics so that they can be automatically adjusted to the existing conditions, ensuring better working conditions and creating a safer and controlled underground environment. The above model can make prediction that are accurate and respond to actual conditions and can be the basis for a further improvement of the Ventilation on Demand (VoD) technology. |
|---|---|
| AbstractList | Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation network assisted by machine learning (ML) techniques and more particularly by the use of Artificial Neural Network (ANN). The developed ANN is focusing in the prediction of NOx concentration at a selected mine site in order to model its operating characteristics so that they can be automatically adjusted to the existing conditions, ensuring better working conditions and creating a safer and controlled underground environment. The above model can make prediction that are accurate and respond to actual conditions and can be the basis for a further improvement of the Ventilation on Demand (VoD) technology. |
| Author | Benardos, Andreas Karagianni, Maria |
| Author_xml | – sequence: 1 givenname: Maria surname: Karagianni fullname: Karagianni, Maria organization: School of Mining & Metallurgical Engineering, NTUA, Athens, Greece – sequence: 2 givenname: Andreas surname: Benardos fullname: Benardos, Andreas organization: School of Mining & Metallurgical Engineering, NTUA, Athens, Greece |
| BookMark | eNpVkMtOAyEYhTFRo9Y-gLt5gVEuwwBL03hpUuNG45JQLhU7hQpMjW8vtW5cnQT-c_LluwDHIQYLwBWC1whDdCMYRxAS0nFIYEuYOALTwxsUlHGMT8EFIowLggXlZ2Ca80f9w6KniOFz8PYUjR0GH1bNGIxNqxRrNhsfbLOzofhBFR9Do99VUrrY5HPxOjdj3ldUKt557dXQBDum3yhfMa3zJThxash2-pcT8Hp_9zJ7bBfPD_PZ7aL1GFPR0l5h2C-NcM5ZBp11HTGcaUgU7TUzwmgtCEJWUEuJWDIBCe4ggtwRQwkmE0APu9sUP0ebi7TLGNe6olecSr2tzFky3NVrJonAsus4q735oeeDi2mjKvRgZFHfQ0wuqaB93u9kiaDci5b_RMsqWu7qcFWDyQ9SCHfE |
| ContentType | Book Chapter |
| Copyright | 2023 Taylor & Francis Group, London, UK |
| Copyright_xml | – notice: 2023 Taylor & Francis Group, London, UK |
| DBID | FFUUA |
| DOI | 10.1201/9781003348030-379 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781000957822 9781000957839 1003348033 1000957829 9781003348030 1000957837 |
| Edition | 1 |
| Editor | Marinos, Vassilis P. Anagnostou, Georgios Benardos, Andreas |
| Editor_xml | – sequence: 1 givenname: Georgios surname: Anagnostou fullname: Anagnostou, Georgios – sequence: 2 givenname: Andreas surname: Benardos fullname: Benardos, Andreas – sequence: 3 givenname: Vassilis P. surname: Marinos fullname: Marinos, Vassilis P. |
| EndPage | 3144 |
| ExternalDocumentID | EBC7245327_392_4487 10_1201_9781003348030_379_version2 |
| GroupedDBID | A7I ACBYE AGWHU ALMA_UNASSIGNED_HOLDINGS V1H FFUUA PYIOH |
| ID | FETCH-LOGICAL-i2259-56a206bd9fffe70fef43d87c03a56c7d9dcc9311e95e539b7903240108f3d5323 |
| IngestDate | Sat Aug 16 21:47:43 EDT 2025 Tue May 06 03:33:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Above Ground Mine Ventilation Digital Twin Unlabelled Training Data BIM Model Ventilation Network Geological Strength Index Productive Tunnels FFN Model Flexible Ducts Ann Model Overburden Minimum Relative Error NOx Measurement Actual Output Result NOx Concentration SEM Diesel Equipment Airflow Quantity Requirement Airflow SCL Airflow Parameters Min Max Normalization Optimum Topology |
| LCCallNum | TA800 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i2259-56a206bd9fffe70fef43d87c03a56c7d9dcc9311e95e539b7903240108f3d5323 |
| OCLC | 1378932958 |
| OpenAccessLink | https://api.taylorfrancis.com/content/chapters/oa-edit/download?identifierName=doi&identifierValue=10.1201/9781003348030-379&type=chapterpdf |
| PQID | EBC7245327_392_4487 |
| PageCount | 9 |
| ParticipantIDs | proquest_ebookcentralchapters_7245327_392_4487 informaworld_taylorfrancisbooks_10_1201_9781003348030_379_version2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationSubtitle | Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece |
| PublicationTitle | Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World |
| PublicationYear | 2023 |
| Publisher | CRC Press Taylor & Francis Group |
| Publisher_xml | – name: CRC Press – name: Taylor & Francis Group |
| SSID | ssj0002965172 |
| Score | 1.6952039 |
| Snippet | Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve... |
| SourceID | proquest informaworld |
| SourceType | Publisher |
| StartPage | 3136 |
| Title | Modelling underground mine ventilation characteristics using artificial neural networks |
| URI | https://www.taylorfrancis.com/books/9781003348030/chapters/10.1201/9781003348030-379 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7245327&ppg=4487&c=UERG |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QBcKA_R8pAP9IQC8SOxfW1p1aqi4rDQ3qzEsaUKEUp3t-rP74yd7CbZUw9ckpWVRNZ8s_Z4Xh8hnwILujJ1kRnndSZLqbNae5_VDTM1r1lQ0kWyCXV-ri8vzY8u0D6PdAKqbfXdnbn-r1DDGICNpbMPgHv1URiA3wA6XAF2uE4s4rHvtU-p6-pUIqER1mwgAcbns951lqoDKsx9bdHu_F79hjHk7E1JRKdd1WTKfrzo-6n2WoXUaamL93Lw_T9oqsbEyZRZh-XEozbQy-iRQC3tGlZgG814i0noI98DFxPfw2yDBmTgMevPqCyacUqnnkUbKzaPTAHpOawKhkUHFj2z3p76kDycI9V4NO7CRweHistCcGXB1LP41L44vv6XIbEYBuD3xbcE8mOyjWFmzPv7xU5WjjhuygKsuC7iDdP5ujGZSRvbjW072iKzF-Q51qdQLByBGe6QR759SZ4N-kq-IhcrmOgAJoow0QFMdAITjTDRNUw0wUR7mF6Tn8dHs8OTrGPQyK5gnTZZUVY8L-vGhBC8yoMPUjRauVxURelUYxrnjGDMm8IXwtTK5NigkeU6iAZkKt6QrfZv698SqspKOHiXCVfKqjba8bxSUhayqZhicpccDGVkF1E3QlIL_D_MLZ43Qb52JF8L8rW3yTfMd8mXXrI2Jgt0GcouiXRup1DvPfSFd-TpWpHfk63FzdJ_IE_c7eJqfvMxasY9q0iCAw |
| linkProvider | Open Access Publishing in European Networks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Expanding+Underground+-+Knowledge+and+Passion+to+Make+a+Positive+Impact+on+the+World&rft.atitle=Modelling+underground+mine+ventilation+characteristics+using+artificial+neural+networks&rft.date=2023-01-01&rft.pub=Taylor+%26+Francis+Group&rft.isbn=9781000957839&rft_id=info:doi/10.1201%2F9781003348030-379&rft.externalDBID=4487&rft.externalDocID=EBC7245327_392_4487 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7245327-l.jpg |

