Modelling underground mine ventilation characteristics using artificial neural networks

Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World s. 3136 - 3144
Hlavní autoři: Karagianni, Maria, Benardos, Andreas
Médium: Kapitola
Jazyk:angličtina
Vydáno: United Kingdom CRC Press 2023
Taylor & Francis Group
Vydání:1
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation network assisted by machine learning (ML) techniques and more particularly by the use of Artificial Neural Network (ANN). The developed ANN is focusing in the prediction of NOx concentration at a selected mine site in order to model its operating characteristics so that they can be automatically adjusted to the existing conditions, ensuring better working conditions and creating a safer and controlled underground environment. The above model can make prediction that are accurate and respond to actual conditions and can be the basis for a further improvement of the Ventilation on Demand (VoD) technology.
AbstractList Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve the environmental and working conditions at the mines. In this paper, the modelling of a section of an existing complex underground ventilation network assisted by machine learning (ML) techniques and more particularly by the use of Artificial Neural Network (ANN). The developed ANN is focusing in the prediction of NOx concentration at a selected mine site in order to model its operating characteristics so that they can be automatically adjusted to the existing conditions, ensuring better working conditions and creating a safer and controlled underground environment. The above model can make prediction that are accurate and respond to actual conditions and can be the basis for a further improvement of the Ventilation on Demand (VoD) technology.
Author Benardos, Andreas
Karagianni, Maria
Author_xml – sequence: 1
  givenname: Maria
  surname: Karagianni
  fullname: Karagianni, Maria
  organization: School of Mining & Metallurgical Engineering, NTUA, Athens, Greece
– sequence: 2
  givenname: Andreas
  surname: Benardos
  fullname: Benardos, Andreas
  organization: School of Mining & Metallurgical Engineering, NTUA, Athens, Greece
BookMark eNpVkMtOAyEYhTFRo9Y-gLt5gVEuwwBL03hpUuNG45JQLhU7hQpMjW8vtW5cnQT-c_LluwDHIQYLwBWC1whDdCMYRxAS0nFIYEuYOALTwxsUlHGMT8EFIowLggXlZ2Ca80f9w6KniOFz8PYUjR0GH1bNGIxNqxRrNhsfbLOzofhBFR9Do99VUrrY5HPxOjdj3ldUKt557dXQBDum3yhfMa3zJThxash2-pcT8Hp_9zJ7bBfPD_PZ7aL1GFPR0l5h2C-NcM5ZBp11HTGcaUgU7TUzwmgtCEJWUEuJWDIBCe4ggtwRQwkmE0APu9sUP0ebi7TLGNe6olecSr2tzFky3NVrJonAsus4q735oeeDi2mjKvRgZFHfQ0wuqaB93u9kiaDci5b_RMsqWu7qcFWDyQ9SCHfE
ContentType Book Chapter
Copyright 2023 Taylor & Francis Group, London, UK
Copyright_xml – notice: 2023 Taylor & Francis Group, London, UK
DBID FFUUA
DOI 10.1201/9781003348030-379
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781000957822
9781000957839
1003348033
1000957829
9781003348030
1000957837
Edition 1
Editor Marinos, Vassilis P.
Anagnostou, Georgios
Benardos, Andreas
Editor_xml – sequence: 1
  givenname: Georgios
  surname: Anagnostou
  fullname: Anagnostou, Georgios
– sequence: 2
  givenname: Andreas
  surname: Benardos
  fullname: Benardos, Andreas
– sequence: 3
  givenname: Vassilis P.
  surname: Marinos
  fullname: Marinos, Vassilis P.
EndPage 3144
ExternalDocumentID EBC7245327_392_4487
10_1201_9781003348030_379_version2
GroupedDBID A7I
ACBYE
AGWHU
ALMA_UNASSIGNED_HOLDINGS
V1H
FFUUA
PYIOH
ID FETCH-LOGICAL-i2259-56a206bd9fffe70fef43d87c03a56c7d9dcc9311e95e539b7903240108f3d5323
IngestDate Sat Aug 16 21:47:43 EDT 2025
Tue May 06 03:33:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Above Ground
Mine Ventilation
Digital Twin
Unlabelled Training Data
BIM Model
Ventilation Network
Geological Strength Index
Productive Tunnels
FFN Model
Flexible Ducts
Ann Model
Overburden
Minimum Relative Error
NOx Measurement
Actual Output Result
NOx Concentration
SEM
Diesel Equipment
Airflow Quantity
Requirement Airflow
SCL
Airflow Parameters
Min Max Normalization
Optimum Topology
LCCallNum TA800
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i2259-56a206bd9fffe70fef43d87c03a56c7d9dcc9311e95e539b7903240108f3d5323
OCLC 1378932958
OpenAccessLink https://api.taylorfrancis.com/content/chapters/oa-edit/download?identifierName=doi&identifierValue=10.1201/9781003348030-379&type=chapterpdf
PQID EBC7245327_392_4487
PageCount 9
ParticipantIDs proquest_ebookcentralchapters_7245327_392_4487
informaworld_taylorfrancisbooks_10_1201_9781003348030_379_version2
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationSubtitle Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 2023, Athens, Greece
PublicationTitle Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World
PublicationYear 2023
Publisher CRC Press
Taylor & Francis Group
Publisher_xml – name: CRC Press
– name: Taylor & Francis Group
SSID ssj0002965172
Score 1.6952039
Snippet Underground bauxite mining exploitations is a challenging environment for ventilation. A controlled underground ventilation system can significantly improve...
SourceID proquest
informaworld
SourceType Publisher
StartPage 3136
Title Modelling underground mine ventilation characteristics using artificial neural networks
URI https://www.taylorfrancis.com/books/9781003348030/chapters/10.1201/9781003348030-379
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7245327&ppg=4487&c=UERG
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVWhQNw4VMUCvKBGwrEdhzH165aFSEqhArtzXISG60oAe2X-hv41czYzm6ye0BIcMmuLCuJ_Lzjmdn3Zgh5xRpe-ryos1YJlxU-BzvouM-8ktx6JBY2PjSbUOfn1dWV_jiZ_Oq1MOtr1XXVzY3--V-hhjEAG6WzfwH35qYwAN8BdLgC7HDd8YjHudeeUpd0KqGhEWo2sAHG6_d96iyqAyxyXzv0Oz_YbzCGPXsjiehdUk1G9uNlX0812GQ7t19n2OMoiXxm22DedbDTImMvUCQT5yjtRWy4Fmt_rwZv9R0d3EC3jHw8FCGPikevQh4D93Yqc4HFN8NHoK6PMhZc7GQspp-mI35JDGVZ8PZUFUsbJXMqmCgHR7NgsVbkntnnod1AvAtKi8FygeXU2zNuwzzEmAdmm9FcA3PNOuYn4Ti_xQspkB76hZ1t8nVclxKcvfTHONzi7d7jdqrd7p3uwWW5uE_uoYyFor4E3uwBmbjuIbk7KD_5iFxucKEDXCjiQge40B1caMCFbnGhERfa4_KYfD49uZieZanRRjYDc64zWVqel3WrvfdO5d75QrSVanJhZdmoVrdNowVjTksnha6VzrGOI8srL1opuHhCDrofnXtKKEQMTtbOgaH3BYfw25baFaxQLVOuVvaQHA_XyCxDXsrHJjL4s1mYP0N0SN70K2sCpyARmZu4pAujEEGuDDj_poCQ_Nm_eOpzcme7m4_IwXK-ci_I7Wa9nC3mL8Nu-Q29T5Rb
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Expanding+Underground+-+Knowledge+and+Passion+to+Make+a+Positive+Impact+on+the+World&rft.au=Karagianni%2C+Maria&rft.au=Benardos%2C+Andreas&rft.atitle=Modelling+underground+mine+ventilation+characteristics+using+artificial+neural+networks&rft.date=2023-01-01&rft.pub=CRC+Press&rft.isbn=9781000957839&rft.spage=3136&rft.epage=3144&rft_id=info:doi/10.1201%2F9781003348030-379&rft.externalDocID=10_1201_9781003348030_379_version2
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7245327-l.jpg