Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling

In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signa...

Full description

Saved in:
Bibliographic Details
Published in:2013 6th International Symposium on Resilient Control Systems (ISRCS) pp. 74 - 79
Main Authors: Potluri, Chandrasekhar, Anugolu, Madhavi, Schoen, Marco P., Naidu, D. Subbaram, Urfer, Alex, Rieger, Craig
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.
AbstractList In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusion-based approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.
Author Potluri, Chandrasekhar
Naidu, D. Subbaram
Rieger, Craig
Schoen, Marco P.
Urfer, Alex
Anugolu, Madhavi
Author_xml – sequence: 1
  givenname: Chandrasekhar
  surname: Potluri
  fullname: Potluri, Chandrasekhar
  email: Potlchan@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 2
  givenname: Madhavi
  surname: Anugolu
  fullname: Anugolu, Madhavi
  email: anugmadh@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 3
  givenname: Marco P.
  surname: Schoen
  fullname: Schoen, Marco P.
  email: schomarc@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 4
  givenname: D. Subbaram
  surname: Naidu
  fullname: Naidu, D. Subbaram
  email: naiduds@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 5
  givenname: Alex
  surname: Urfer
  fullname: Urfer, Alex
  email: urfealex@isu.edu
  organization: Idaho State Univ., Pocatello, ID, USA
– sequence: 6
  givenname: Craig
  surname: Rieger
  fullname: Rieger, Craig
  email: craig.rieger@inl.gov
  organization: Idaho Nat. Lab., Idaho Falls, ID, USA
BookMark eNot0M1OAjEcBPCaaKIgL6CXvsBiv9huj2aDQIIxET2TbvvvWul2ybYceHuXyGkuk18mM0G3sY-A0BMlc0qJetnsPuvdnBHK52XJuFyIGzShQipFFoRX92iW0i8hhErJeFU9oEPdd8dT1tn3UQfsY4YQfAvRAG50Aoutzhq7UxoLWIe2H3z-6bDrB2zPUXfe4LR8X2EdLU4HCJBHpjslE-BSGpmutxczto_ozumQYHbNKfp-W37V62L7sdrUr9vCM6pyIS1nYpzruHWN0II3thRGiJJUXHCrKBDWkIa7yihWSquAqoUT0jhaVtwZPkXP_64HgP1x8J0ezvvrH_wPTptZvQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISRCS.2013.6623754
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479905038
9781479905034
EndPage 79
ExternalDocumentID 6623754
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704407200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 04:48:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i219t-7d324050f3dfb4a43bd64c44608343d91e02b0b3f8c9267d9e195f47cf1683fc3
OpenAccessLink https://www.osti.gov/biblio/1097181
PageCount 6
ParticipantIDs ieee_primary_6623754
PublicationCentury 2000
PublicationDate 2013-Aug.
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-Aug.
PublicationDecade 2010
PublicationTitle 2013 6th International Symposium on Resilient Control Systems (ISRCS)
PublicationTitleAbbrev ISRCS
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001772388
Score 1.5249599
Snippet In this work, an array of three surface Electromyography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test...
SourceID ieee
SourceType Publisher
StartPage 74
SubjectTerms Algorithm design and analysis
Approximate Entropy
Computational modeling
Data fusion
Entropy
Force
Fuzzy logic
Muscles
Sensors
Title Computational intelligence based data fusion algorithm for dynamic sEMG and skeletal muscle force modelling
URI https://ieeexplore.ieee.org/document/6623754
WOSCitedRecordID wos000704407200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG6AePCkBozf6cGjg452_TgTUA8SIppwI10_dEGHYZu_37aboIkXb83Sdknb7Hn67n3eB4Brz4mtpnHEEDeR47cqEoqjyCaKKi6RkkoFswk2nfLFQsxa4GarhTHGhOQz0_fN8C9fr1XlQ2UD6rCaJaQN2ozRWqu1i6cwb5_Fv3UxSAzu54-juU_ewv1m4C8HlQAgk4P_vfoQ9HZKPDjbYswRaJm8C1a1FUMTxoPZj6qa0KOShj7vE9rKR8KgfHtZb7Ly9R06fgp17UAPi_HDLZS5hsXKAY9j4PC9KtwR8p3cNMEgxyvVe-B5Mn4a3UWNaUKUuY9PGTHtS-wlyGJtUyIJTjUlyl36HNciWIvYoGGKUmy5EkPKtDCxSCxhysaUY6vwMejk69ycAOiuZqlOpMUMW2IM5SmJiTLcIKmRm-cUdP1CLT_quhjLZo3O_n58DvaHwUrCJ89dgE65qcwl2FOfZVZsrsJmfgE966Lu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSkBoy_7cGjhW7t1u5MQIhAiGDCjWz9oQsyDNv8-223CZp48dYsbZe0zd7rt-99D4B7y4m19B3EMFfI8FuBAsEx0p7wBQ-xCIUozCbYeMzn82BSAw9bLYxSqkg-Uy3bLP7ly7XIbais7RusZh7dA_sepS4u1Vq7iAqzBlr8WxmDg_Zg-tyZ2vQt0qqG_vJQKSCkd_y_l5-A5k6LBydblDkFNZU0wLI0Y6gCeTD-UVcTWlyS0GZ-Qp3bWBgM31_Xmzh7W0HDUKEsPehh2h09wjCRMF0a6DEcHK7y1Bwi28lMU1jkWK16E7z0urNOH1W2CSg2n58MMWmL7HlYE6kjGlISSZ8Kc-0zbIsSGTgKuxGOiOYicH0mA-UEnqZMaMfnRAtyBurJOlHnAJrLWSS9UBNGNFXK5xF1qFBc4VBiM88FaNiFWnyUlTEW1Rpd_v34Dhz2Z6PhYjgYP12BI7cwlrCpdNegnm1ydQMOxGcWp5vbYmO_AOOYpjU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+6th+International+Symposium+on+Resilient+Control+Systems+%28ISRCS%29&rft.atitle=Computational+intelligence+based+data+fusion+algorithm+for+dynamic+sEMG+and+skeletal+muscle+force+modelling&rft.au=Potluri%2C+Chandrasekhar&rft.au=Anugolu%2C+Madhavi&rft.au=Schoen%2C+Marco+P.&rft.au=Naidu%2C+D.+Subbaram&rft.date=2013-08-01&rft.pub=IEEE&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1109%2FISRCS.2013.6623754&rft.externalDocID=6623754