Accelerated AC contingency calculation on commodity multi-core SIMD CPUs

Multi-core CPUs with multiple levels of parallelism (i.e. data level, instruction level and task/core level) have become the mainstream CPUs for commodity computing systems. Based on the multi-core CPUs, in this paper we developed a high performance computing framework for AC contingency calculation...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings / IEEE Power Engineering Society General Meeting s. 1 - 5
Hlavní autori: Tao Cui, Rui Yang, Hug, Gabriela, Franchetti, Franz
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2014
Predmet:
ISSN:1932-5517
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Multi-core CPUs with multiple levels of parallelism (i.e. data level, instruction level and task/core level) have become the mainstream CPUs for commodity computing systems. Based on the multi-core CPUs, in this paper we developed a high performance computing framework for AC contingency calculation (ACCC) to fully utilize the computing power of commodity systems for online and real time applications. Using Woodbury matrix identity based compensation method, we transform and pack multiple contingency cases of different outages into a fine grained vectorized data parallel programming model. We implement the data parallel programming model using SIMD instruction extension on x86 CPUs, therefore, fully taking advantages of the CPU core with SIMD floating point capability. We also implement a thread pool scheduler for ACCC on multi-core CPUs which automatically balances the computing loads across CPU cores to fully utilize the multi-core capability. We test the ACCC solver on the IEEE test systems and on the Polish 3000-bus system using a quad-core Intel Sandy Bridge CPU. The optimized ACCC solver achieves close to linear speedup (SIMD width multiply core numbers) comparing to scalar implementation and is able to solve a complete N-1 line outage AC contingency calculation of the Polish grid within one second on a commodity CPU. It enables the complete ACCC as a real-time application on commodity computing systems.
ISSN:1932-5517
DOI:10.1109/PESGM.2014.6939078