Real time robust L1 tracker using accelerated proximal gradient approach

Recently sparse representation has been applied to visual tracker by modeling the target appearance using a sparse approximation over a template set, which leads to the so-called L1 trackers as it needs to solve an ℓ 1 norm related minimization problem for many times. While these L1 trackers showed...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE Conference on Computer Vision and Pattern Recognition pp. 1830 - 1837
Main Authors: Chenglong Bao, Yi Wu, Haibin Ling, Hui Ji
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2012
Subjects:
ISBN:9781467312264, 1467312266
ISSN:1063-6919, 1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently sparse representation has been applied to visual tracker by modeling the target appearance using a sparse approximation over a template set, which leads to the so-called L1 trackers as it needs to solve an ℓ 1 norm related minimization problem for many times. While these L1 trackers showed impressive tracking accuracies, they are very computationally demanding and the speed bottleneck is the solver to ℓ 1 norm minimizations. This paper aims at developing an L1 tracker that not only runs in real time but also enjoys better robustness than other L1 trackers. In our proposed L1 tracker, a new ℓ 1 norm related minimization model is proposed to improve the tracking accuracy by adding an ℓ 1 norm regularization on the coefficients associated with the trivial templates. Moreover, based on the accelerated proximal gradient approach, a very fast numerical solver is developed to solve the resulting ℓ 1 norm related minimization problem with guaranteed quadratic convergence. The great running time efficiency and tracking accuracy of the proposed tracker is validated with a comprehensive evaluation involving eight challenging sequences and five alternative state-of-the-art trackers.
AbstractList Recently sparse representation has been applied to visual tracker by modeling the target appearance using a sparse approximation over a template set, which leads to the so-called L1 trackers as it needs to solve an ℓ 1 norm related minimization problem for many times. While these L1 trackers showed impressive tracking accuracies, they are very computationally demanding and the speed bottleneck is the solver to ℓ 1 norm minimizations. This paper aims at developing an L1 tracker that not only runs in real time but also enjoys better robustness than other L1 trackers. In our proposed L1 tracker, a new ℓ 1 norm related minimization model is proposed to improve the tracking accuracy by adding an ℓ 1 norm regularization on the coefficients associated with the trivial templates. Moreover, based on the accelerated proximal gradient approach, a very fast numerical solver is developed to solve the resulting ℓ 1 norm related minimization problem with guaranteed quadratic convergence. The great running time efficiency and tracking accuracy of the proposed tracker is validated with a comprehensive evaluation involving eight challenging sequences and five alternative state-of-the-art trackers.
Author Yi Wu
Haibin Ling
Hui Ji
Chenglong Bao
Author_xml – sequence: 1
  surname: Chenglong Bao
  fullname: Chenglong Bao
  email: baochenglong@nus.edu.sg
  organization: Dept. of Math., Nat. Univ. of Singapore, Singapore, Singapore
– sequence: 2
  surname: Yi Wu
  fullname: Yi Wu
  email: wuyi@temple.edu
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
– sequence: 3
  surname: Haibin Ling
  fullname: Haibin Ling
  email: hbling@temple.edu
  organization: Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA
– sequence: 4
  surname: Hui Ji
  fullname: Hui Ji
  email: matjh@nus.edu.sg
  organization: Dept. of Math., Nat. Univ. of Singapore, Singapore, Singapore
BookMark eNpNUF1LwzAUjTrBbfYHiC_5A625SZePRynqhIIy1NeRJjez2rUl7UD_vQUneF4OnI_L5SzIrO1aJOQKWAbAzE3x9rzJOAOeSZ4rreGELCCXSgDnmp-SOTApUmnAnJHEKP3nyXz2z7sgyTB8sAlTghk-J-sN2oaO9R5p7KrDMNIS6Bit-8RID0Pd7qh1DhuMdkRP-9h91fupsYvW19iO1PaTZt37JTkPthkwOfKSvN7fvRTrtHx6eCxuy7TmoMfUMJYHCC4otI5XTgmJ6LhWFeRi5YJXIgjACqy3DkFhkFobG6RHsQrciyW5_r1bI-K2j9M38Xt7HEX8AFLGVFM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2012.6247881
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467312282
1467312274
9781467312271
9781467312288
EISSN 1063-6919
EndPage 1837
ExternalDocumentID 6247881
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i218t-9004f1fcf7eac2bc736eec287b1435cfd73f31eb1adace17ef6889af6de35f2d3
IEDL.DBID RIE
ISBN 9781467312264
1467312266
ISICitedReferencesCount 460
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309166201124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 04:27:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i218t-9004f1fcf7eac2bc736eec287b1435cfd73f31eb1adace17ef6889af6de35f2d3
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/104616
PageCount 8
ParticipantIDs ieee_primary_6247881
PublicationCentury 2000
PublicationDate 2012-June
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-June
PublicationDecade 2010
PublicationTitle 2012 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781092
ssj0023720
ssj0003211698
Score 2.46325
Snippet Recently sparse representation has been applied to visual tracker by modeling the target appearance using a sparse approximation over a template set, which...
SourceID ieee
SourceType Publisher
StartPage 1830
SubjectTerms Accuracy
Minimization
Noise
Real time systems
Robustness
Target tracking
Visualization
Title Real time robust L1 tracker using accelerated proximal gradient approach
URI https://ieeexplore.ieee.org/document/6247881
WOSCitedRecordID wos000309166201124&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYo6tCpD6j6loeONeCY2PGMihgQQqhFbMiPM2IoVCH09_ccEqpKXbrFJ-UhO_Z9d_fdHSHPIlPaJEKzRMuM9RGUMmutZ2nPQgo2BSh9uvOxmkyyxUJPG-TlmAsDACX5DDrxsozl-63bR1dZVyax2DvaOidKyUOu1tGfEovW9KoIYRwLtGykPkYUktiNpYx8SsGk5rpM8pJKcMQfsq79VI37VfgTH9gdzKezyABLOtXbf7VhKbXQ8Px_339B2j_pfHR6VFSXpAGbK3Je4U9a7e4diuoWD7WsRUYzBJI0NqCn-dbudwUdc1rkJpIxaOTMr6hxDlVXrDjhaSTFrD_wjlVeUskKWtcsb5P34evbYMSq5gtsjVq_YBp3T-DBBYVHc2KdEhLAoX1lI8JywSsRBMeT3njjgCsIMsu0CdKDSEPixTVpbrYbuCEUQSi3JlgJGaA5aTNuMp9qrxA9mr6Vt6QV52r5eaivsaym6e5v8T05i8txoGs9kGaR7-GRnLqvYr3Ln8qf4hvBmK_H
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QNdETKhjf7sGjBdptt90zkWCshBAk3Mg-ZgkHwZTi73e2tDUmXrx1J2mb7nZ3vpn5ZoaQR5bEQgZMeIHgiRciKPWUUsaLegoiUBFA4dOdpfFolMznYtwgT3UuDAAU5DPouMsilm82eudcZV0euGLvaOscRmEY9PbZWrVHxZWt6ZUxQjdmaNtwUccUAtePpYh9cuZx4YsizYvHzEcEwqvqT-U4LAOg-MBufzaeOA5Y0Cnf_6sRS6GHBs3_fcEpaf8k9NFxrarOSAPW56RZIlBa7u8tiqomD5WsRYYThJLUtaCn2UbttjlNfZpn0tExqGPNL6nUGpWXqzlhqKPFrD7wjmVWkMlyWlUtb5P3wfO0P_TK9gveCvV-7gncP9a32sZ4OAdKx4wDaLSwlMNY2pqYWebjWS-N1ODHYHmSCGm5ARbZwLALcrDerOGSUIShvpJWcUgADUqV-DIxkTAx4kcZKn5FWm6uFp_7ChuLcpqu_xY_kOPh9C1dpC-j1xty4pZmT966JQd5toM7cqS_8tU2uy9-kG8bKbMO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Real+time+robust+L1+tracker+using+accelerated+proximal+gradient+approach&rft.au=Chenglong+Bao&rft.au=Yi+Wu&rft.au=Haibin+Ling&rft.au=Hui+Ji&rft.date=2012-06-01&rft.pub=IEEE&rft.isbn=9781467312264&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1830&rft.epage=1837&rft_id=info:doi/10.1109%2FCVPR.2012.6247881&rft.externalDocID=6247881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon