Linear planning logic: An efficient language and theorem prover for robotic task planning

In this paper, we introduce a novel logic language and theorem prover for robotic task planning. Our language, which we call Linear Planning Logic (LPL), is a fragment of linear logic whose resource-conscious semantics are well suited for reasoning with dynamic state, while its structure admits effi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - IEEE International Conference on Robotics and Automation s. 3764 - 3770
Hlavní autoři: Kortik, Sitar, Saranli, Uluc
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2014
Témata:
ISSN:1050-4729
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a novel logic language and theorem prover for robotic task planning. Our language, which we call Linear Planning Logic (LPL), is a fragment of linear logic whose resource-conscious semantics are well suited for reasoning with dynamic state, while its structure admits efficient theorem provers for automatic plan construction. LPL can be considered as an extension of Linear Hereditary Harrop Formulas (LHHF), whose careful design allows the minimization of nondeterminism in proof search, providing a sufficient basis for the design of linear logic programming languages such as Lolli. Our new language extends on the expressivity of LHHF, while keeping the resulting nondeterminism in proof search to a minimum for efficiency. This paper introduces the LPL language, presents the main ideas behind our theorem prover on a smaller fragment of this language and finally provides an experimental illustration of its operation on the problem of task planning for the hexapod robot RHex.
ISSN:1050-4729
DOI:10.1109/ICRA.2014.6907404