Ultra Low-Power Drowsiness Detection System with BioWolf

Drowsiness is a cause of accidents in industrial and mining activities. A considerable amount of effort has been put into the detection of drowsiness, and since then it has been integrated into a large variety of wearable systems. Nevertheless, the technology still suffers from high intrusiveness, s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International IEEE/EMBS Conference on Neural Engineering (Online) s. 1187 - 1190
Hlavní autori: Kartsch, V., Benatti, S., Guermandi, M., Montagna, F., Benini, L.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2019
Predmet:
ISSN:1948-3554
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Drowsiness is a cause of accidents in industrial and mining activities. A considerable amount of effort has been put into the detection of drowsiness, and since then it has been integrated into a large variety of wearable systems. Nevertheless, the technology still suffers from high intrusiveness, short battery life and lack of generality. An opportunity to address these shortcomings arises from the use of physiological and behavioral features for bio-signals like EEG and IMU sensors. In this work, we propose an energy-efficient wearable platform for drowsiness detection. Our platform features a minimally invasive setup, based on dry EEG sensors to acquire neural data, and Mr. Wolf, an 8-core ultra-low-power digital platform. The system has been validated on three test subjects, achieving detection accuracy of 83%, using a Nearest Centroid Classifier, modeled with a semi-supervised algorithm from previously collected data. This work further extends the capabilities of our previous system, providing a more sophisticated classification mechanism that includes real-time and onboard sensor fusion processing while running into a highly efficient and unobtrusive hardware platform, outperforming the current State of the Art (SoA) in terms of wearability and battery lifetime.
AbstractList Drowsiness is a cause of accidents in industrial and mining activities. A considerable amount of effort has been put into the detection of drowsiness, and since then it has been integrated into a large variety of wearable systems. Nevertheless, the technology still suffers from high intrusiveness, short battery life and lack of generality. An opportunity to address these shortcomings arises from the use of physiological and behavioral features for bio-signals like EEG and IMU sensors. In this work, we propose an energy-efficient wearable platform for drowsiness detection. Our platform features a minimally invasive setup, based on dry EEG sensors to acquire neural data, and Mr. Wolf, an 8-core ultra-low-power digital platform. The system has been validated on three test subjects, achieving detection accuracy of 83%, using a Nearest Centroid Classifier, modeled with a semi-supervised algorithm from previously collected data. This work further extends the capabilities of our previous system, providing a more sophisticated classification mechanism that includes real-time and onboard sensor fusion processing while running into a highly efficient and unobtrusive hardware platform, outperforming the current State of the Art (SoA) in terms of wearability and battery lifetime.
Author Guermandi, M.
Montagna, F.
Benini, L.
Benatti, S.
Kartsch, V.
Author_xml – sequence: 1
  givenname: V.
  surname: Kartsch
  fullname: Kartsch, V.
  organization: DEI, University of Bologna, Italy
– sequence: 2
  givenname: S.
  surname: Benatti
  fullname: Benatti, S.
  organization: DEI, University of Bologna, Italy
– sequence: 3
  givenname: M.
  surname: Guermandi
  fullname: Guermandi, M.
  organization: DEI, University of Bologna, Italy
– sequence: 4
  givenname: F.
  surname: Montagna
  fullname: Montagna, F.
  organization: DEI, University of Bologna, Italy
– sequence: 5
  givenname: L.
  surname: Benini
  fullname: Benini, L.
  organization: DEI, University of Bologna, Italy
BookMark eNotz81KxDAUQOEoCo5j94KbvkDrvU3a3Cx1ZvyBoqIOLoe2ucFIp5GmUObtXTirs_vgXIqzIQwsxDVCjgjm9mXznheAJieNGjSciMRowlJSpU2BcCoWaBRlsizVhUhi_AEAWYBCQwtB234am7QOc_YWZh7T9Rjm6AeOMV3zxN3kw5B-HOLE-3T203d678NX6N2VOHdNHzk5dim2D5vP1VNWvz4-r-7qzBeop8xCWbFrO8tOt4YcM0BpiaxCVKgsoyRTOOPaiqpOotWqIc1sS0WKAeVS3Py7npl3v6PfN-Nhd3yVf4DpSPc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NER.2019.8717070
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538679210
1538679213
EISSN 1948-3554
EndPage 1190
ExternalDocumentID 8717070
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i217t-d056efbcdef7b98fee005d88d411414de13892f9fb686c31d74a87eed5484e013
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469933200288&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:47:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i217t-d056efbcdef7b98fee005d88d411414de13892f9fb686c31d74a87eed5484e013
OpenAccessLink http://hdl.handle.net/11585/712573
PageCount 4
ParticipantIDs ieee_primary_8717070
PublicationCentury 2000
PublicationDate 2019-March
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-March
PublicationDecade 2010
PublicationTitle International IEEE/EMBS Conference on Neural Engineering (Online)
PublicationTitleAbbrev NER
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204198
Score 1.7456951
Snippet Drowsiness is a cause of accidents in industrial and mining activities. A considerable amount of effort has been put into the detection of drowsiness, and...
SourceID ieee
SourceType Publisher
StartPage 1187
SubjectTerms Biomedical monitoring
Electroencephalography
Feature extraction
Hardware
Head
Microsoft Windows
Monitoring
Title Ultra Low-Power Drowsiness Detection System with BioWolf
URI https://ieeexplore.ieee.org/document/8717070
WOSCitedRecordID wos000469933200288&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGjsftIN8lV2-JBliIWeyu7yQQWyq7Urf37TnZrRfDiLQTCJtkkM9_MNzMAtyGGoR1lgvt8SlygNlwHJuJZ7Eg6Ci-zVVNsQqapWiz0rAN3-1gYRGzIZ3jvm40v31Zm401lQ1LuJR3RLnSlTNpYrb09JY4CQQD62xMZ6GE6efHULToL7bBf9VMa8TE9-t-Hj2HwE4fHZnsJcwIdLPug5qt6nbHnastnvsQZGxOSbtnrbIx1Q60qWZuJnHkzK3soqrdq5QYwn05eH5_4rv4BLwgo1NyScoIuNxadzLVyiHRlrFJWEIgJhUXvZIycdnmiEhOHVopMSZoSoRCBpNudQq-sSjwDFmRCGJfRbQuMsIYe6MS6kcsjMTImQnUOfb_q5Xub4mK5W_DF392XcOg3tqViXUGvXm_wGg7MZ118rG-a__IFYguPEQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRJZRN_mwcfjWu765q-6jYmzjJkw72NLrnAYLQyO_33vbQ6EXzxLQRCkzTJ3Xf33R3AtU--b8IUpcunJJFiLWNPBzJtW5aO6GS2KotNREmiptN4VIObTSwMEZXkM7p1zdKXb3K9dqayFiv3ER_RLdgOEQOvitbaWFTagYcMob99kV7cSnrPjrzFp6Ea-KuCSilA-vv_-_QBNH8i8cRoI2MOoUZZA9RkWaxSMcw_5MgVORNdxtIVf110qSjJVZmocpELZ2gVd4v8JV_aJkz6vfH9QH5VQJALhgqFNKyekJ1rQzaax8oS8aUxShlkGOOjIedmDGxs5x3V0W3fRJiqiKfEOASJtbsjqGd5RscgvBRR25Tvm6fRaH6iO8aGdh5gqHVA6gQabtWz1yrJxexrwad_d1_B7mD8NJwNH5LHM9hzm1wRs86hXqzWdAE7-r1YvK0uy3_0CQQ9klg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28Online%29&rft.atitle=Ultra+Low-Power+Drowsiness+Detection+System+with+BioWolf&rft.au=Kartsch%2C+V.&rft.au=Benatti%2C+S.&rft.au=Guermandi%2C+M.&rft.au=Montagna%2C+F.&rft.date=2019-03-01&rft.pub=IEEE&rft.eissn=1948-3554&rft.spage=1187&rft.epage=1190&rft_id=info:doi/10.1109%2FNER.2019.8717070&rft.externalDocID=8717070