A novel partially connected cooperative parallel PSO-SVM algorithm: Study based on sleep apnea detection

Sleep disorders are common in a general population. It effect one in 5 adults and has several short term and long term bad side effects on health. Sleep apnea (SA) is the most important and common component of sleep disorders. This paper presents an automatic approach for detecting apnea events by u...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 IEEE Congress on Evolutionary Computation s. 1 - 8
Hlavní autori: Maali, Y., Al-Jumaily, Adel
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2012
Predmet:
ISBN:1467315109, 9781467315104
ISSN:1089-778X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Sleep disorders are common in a general population. It effect one in 5 adults and has several short term and long term bad side effects on health. Sleep apnea (SA) is the most important and common component of sleep disorders. This paper presents an automatic approach for detecting apnea events by using few bio-singles that are related to breathe defect. This work uses only air flow, thoracic and abdominal respiratory movement as input. The proposed algorithm consists of three main parts which are signal segmentation, feature generation and classification. A new proposed segmentation method intelligently segments the input signals for further classification, then features are generated for each segment by wavelet packet coefficients and also original signals. In classification phase a unique parallel PSO-SVM algorithm is investigated. PSO used to tune SVM parameters, and also data reduction. Proposed parallel structure used to help PSO to search space more efficiently, also avoiding fast convergence and local optimal results that are common problem in similar parallel algorithms. Obtained results demonstrate that the proposed method is effective and robust in sleep apnea detection and statistical tests on the results shown superiority of it versus previous methods even with more input signals, and also versus single PSO-SVM. Using fewer signals means more comfortable to subject and also, reduction of cost during recording the data.
ISBN:1467315109
9781467315104
ISSN:1089-778X
DOI:10.1109/CEC.2012.6256138