Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem
Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems....
Uloženo v:
| Vydáno v: | 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making, Honolulu, HI, 1-5 April 2007 s. 333 - 340 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2007
|
| Témata: | |
| ISBN: | 9781424407026, 1424407028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems. This paper extends the population-based ACO algorithm with a crowding population replacement scheme to increase the search efficacy and efficiency. Results are shown for a suite of multi-objective travelling salesman problems of varying complexity |
|---|---|
| ISBN: | 9781424407026 1424407028 |
| DOI: | 10.1109/MCDM.2007.369110 |

