Who's Better? Who's Best? Pairwise Deep Ranking for Skill Determination

This paper presents a method for assessing skill from video, applicable to a variety of tasks, ranging from surgery to drawing and rolling pizza dough. We formulate the problem as pairwise (who's better?) and overall (who's best?) ranking of video collections, using supervised deep ranking...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 6057 - 6066
Main Authors: Doughty, Hazel, Damen, Dima, Mayol-Cuevas, Walterio
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2018
Subjects:
ISSN:1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a method for assessing skill from video, applicable to a variety of tasks, ranging from surgery to drawing and rolling pizza dough. We formulate the problem as pairwise (who's better?) and overall (who's best?) ranking of video collections, using supervised deep ranking. We propose a novel loss function that learns discriminative features when a pair of videos exhibit variance in skill, and learns shared features when a pair of videos exhibit comparable skill levels. Results demonstrate our method is applicable across tasks, with the percentage of correctly ordered pairs of videos ranging from 70% to 83% for four datasets. We demonstrate the robustness of our approach via sensitivity analysis of its parameters. We see this work as effort toward the automated organization of how-to video collections and overall, generic skill determination in video.
ISSN:1063-6919
DOI:10.1109/CVPR.2018.00634