DensePose: Dense Human Pose Estimation in the Wild

In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition s. 7297 - 7306
Hlavní autori: Guler, Riza Alp, Neverova, Natalia, Kokkinos, Iasonas
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2018
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence 'in the wild', namely in the presence of background, occlusions and scale variations. We improve our training set's effectiveness by training an inpainting network that can fill in missing ground truth values and report improvements with respect to the best results that would be achievable in the past. We experiment with fully-convolutional networks and region-based models and observe a superiority of the latter. We further improve accuracy through cascading, obtaining a system that delivers highly-accurate results at multiple frames per second on a single gpu. Supplementary materials, data, code, and videos are provided on the project page http://densepose.org.
AbstractList In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence 'in the wild', namely in the presence of background, occlusions and scale variations. We improve our training set's effectiveness by training an inpainting network that can fill in missing ground truth values and report improvements with respect to the best results that would be achievable in the past. We experiment with fully-convolutional networks and region-based models and observe a superiority of the latter. We further improve accuracy through cascading, obtaining a system that delivers highly-accurate results at multiple frames per second on a single gpu. Supplementary materials, data, code, and videos are provided on the project page http://densepose.org.
Author Neverova, Natalia
Guler, Riza Alp
Kokkinos, Iasonas
Author_xml – sequence: 1
  givenname: Riza Alp
  surname: Guler
  fullname: Guler, Riza Alp
– sequence: 2
  givenname: Natalia
  surname: Neverova
  fullname: Neverova, Natalia
– sequence: 3
  givenname: Iasonas
  surname: Kokkinos
  fullname: Kokkinos, Iasonas
BookMark eNotjjtPwzAURg0CibZkZmDxH0h6_Yh9zYZCoUiVqBCPsbKTizBqHVSHgX_f8Ji-T2c4OlN2kvpEjF0IqIQAN29e1o-VBIEVgDXyiBXOoqgVGqMluGM2EWBUaZxwZ6zI-QMApEGFup4weUMp07rPdMV_L19-7XziP4Qv8hB3foh94jHx4Z34a9x25-z0zW8zFf87Y8-3i6dmWa4e7u6b61UZpTBDGcgHp2yrKXQOO0GidSPDGjrSznTeEkpvwcsgANUYHDRKGWrXetcarWbs8s8biWjzuR9T9t8brC2iAXUA7HhF6A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00762
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 7306
ExternalDocumentID 8578860
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i216t-beab937c4ebd98d1e1c9bea850de496da7e82a70a2b1083153b4822b59ca9c643
IEDL.DBID RIE
ISICitedReferencesCount 935
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843607047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i216t-beab937c4ebd98d1e1c9bea850de496da7e82a70a2b1083153b4822b59ca9c643
OpenAccessLink https://hal.science/hal-01951864
PageCount 10
ParticipantIDs ieee_primary_8578860
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6480963
Snippet In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human...
SourceID ieee
SourceType Publisher
StartPage 7297
SubjectTerms Deformable models
Pipelines
Pose estimation
Solid modeling
Task analysis
Three-dimensional displays
Training
Title DensePose: Dense Human Pose Estimation in the Wild
URI https://ieeexplore.ieee.org/document/8578860
WOSCitedRecordID wos000457843607047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZKxcDE0SJueWAkNHF8spZWTFWEAHWr_OxnqUuKevD7sZOoMLCwPb_Jt793-SPkHgLK3AFkuUXMeMltZpWXmWfWShCAnkFDNqFmMz2fm6pHHva1MIjYJJ_hYxKbWL5fuV1ylY103F5aRgP9QCnV1mrt_SlM6lJ3EbLULqNlI43ufvMpcjMaf1SvKZcrJU-qxI7zi06leU2mx__rxwkZ_pTl0Wr_4JySHtZn5LjDkbQ7pZsBYc_RNsVqtcEn2oi0cdXTpKGTeKbbckW6rGmEfzReDH5I3qeTt_FL1nEjZEtWyG0GaCEiC8cRvNG-wMKZqNMi98iN9FahZlbllkGRyMRECTxiARDGWeMiDDkn_XpV4wWhFoSQPJTSIecYCihFCMnQAwwyaHNJBmkKFp_t9xeLbvRXf6uvyVGa4zab6ob0t-sd3pJD97VdbtZ3zZp9A8e0l4g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqggRTgRbxxgMjoYljOzZraVVEqSJUULfKZ1-kLi3qg9-PnUSFgYXtfJPf_u7lj5A7KFDGFiCKDWLEU24ikzkZOWaMBAHoGJRkE9l4rKZTnTfI_a4WBhHL5DN8CGIZy3dLuw2usq7y20tJb6DvCc5ZUlVr7TwqTKpU1TGy0E69bSO1qv_zSWLd7X3kbyGbK6RPZoEf5xehSvmeDFr_68kR6fwU5tF89-QckwYuTkirRpK0PqfrNmFP3jrFfLnGR1qKtHTW06ChfX-qq4JFOl9QDwCpvxpch7wP-pPeMKrZEaI5S-QmAjTgsYXlCE4rl2BitdcpETvkWjqToWImiw2DJNCJiRS4RwMgtDXaeiBySpqL5QLPCDUghORFKi1yjkUCqSiKYOoBFrJQ-py0wxTMPqsPMGb16C_-Vt-Sg-HkdTQbPY9fLslhmO8qt-qKNDerLV6Tffu1ma9XN-X6fQPd1JrP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=DensePose%3A+Dense+Human+Pose+Estimation+in+the+Wild&rft.au=Guler%2C+Riza+Alp&rft.au=Neverova%2C+Natalia&rft.au=Kokkinos%2C+Iasonas&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7297&rft.epage=7306&rft_id=info:doi/10.1109%2FCVPR.2018.00762&rft.externalDocID=8578860