Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many soci...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition s. 2255 - 2264
Hlavní autoři: Gupta, Agrim, Johnson, Justin, Fei-Fei, Li, Savarese, Silvio, Alahi, Alexandre
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2018
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.
AbstractList Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.
Author Savarese, Silvio
Fei-Fei, Li
Alahi, Alexandre
Johnson, Justin
Gupta, Agrim
Author_xml – sequence: 1
  givenname: Agrim
  surname: Gupta
  fullname: Gupta, Agrim
– sequence: 2
  givenname: Justin
  surname: Johnson
  fullname: Johnson, Justin
– sequence: 3
  givenname: Li
  surname: Fei-Fei
  fullname: Fei-Fei, Li
– sequence: 4
  givenname: Silvio
  surname: Savarese
  fullname: Savarese, Silvio
– sequence: 5
  givenname: Alexandre
  surname: Alahi
  fullname: Alahi, Alexandre
BookMark eNotjL1OwzAYAA0CiVIyM7D4BRLsOHZstiiiBakqf4W1-ux8ES4hqeyoVd8eUJnuhtNdkrN-6JGQa84yzpm5rT-eX7OccZ0xlhfshCSm1FwKrVSRM3NKJpwpkSrDzQVJYtyw305poQs5IS9vg_PQ0Xm1vKNH7w60cg63I9gO6SrABt04BI-R7v34SefYY4DR75BWzQ5DhPB3WOK4H8JXvCLnLXQRk39OyfvsflU_pIun-WNdLVKfczWmtjSmbJSwOWh0hShKi4praZpWWSa4lY1yCqwGx1vROtsw2XKQLZi8RGBiSm6OX4-I623w3xAOay1LLYQWP_9RUos
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00240
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2264
ExternalDocumentID 8578338
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i216t-b7997d63b2a8ec4347be61859df6b031b5d6c6ab8ac1f3fcbd05f1a5fa927ea03
IEDL.DBID RIE
ISICitedReferencesCount 1685
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843602040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i216t-b7997d63b2a8ec4347be61859df6b031b5d6c6ab8ac1f3fcbd05f1a5fa927ea03
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/146393
PageCount 10
ParticipantIDs ieee_primary_8578338
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6396172
Snippet Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate...
SourceID ieee
SourceType Publisher
StartPage 2255
SubjectTerms Computational modeling
Decoding
Gallium nitride
Generators
History
Predictive models
Trajectory
Title Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
URI https://ieeexplore.ieee.org/document/8578338
WOSCitedRecordID wos000457843602040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8eAJFYzv9ODRyj66fXgjRPS0QaOGG-kzwRggLJj47227G_TgxVvbU9Np-3Wm3zcDcO0MNU6wBBNpHCbEZlhpJTGxLneSJERLFYtNsLLk06mYtOBmp4Wx1kbymb0NzfiXb5Z6G0JlA-63l3ep2tBmjNVarV08JaM8580PWejn3rOhgjfZfNJEDEZvk-fA5YrkyRDs-FVOJaLJuPu_eRxA_0eWhyY7wDmEll0cQbd5R6LmlFY9eKo1t-hhWN6huv3xhYY6MFiCUgp5gHqP0XrvJqMQiUV19ulw9aFYormSYWOisiaJV314Hd-_jB5xUzoBz7OUbrBiQjBDc5VJbjXJCVOWemgWxlHlz7EqDNVUKi516o2ilUkKl8rCSZExK5P8GDqL5cKeANKEE5No75jlhnjA4_5G9K-wwkrrstS4U-iFFZqt6uwYs2Zxzv4ePof9YIKabHUBnc16ay9hT39u5tX6Kpr0G7vSo8c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_Doyj663dYbISJG3KBBw430mWAMGBZM_Pe23Q168OKt7anptP060--bAbg0iijDsjDAXJkAYx0HQgoeYG0Sw3GIJRe-2ESW53Q8ZsMaXK21MFprTz7T167p__LVXK5cqKxN7fayLtUGbKYYx1Gp1lpHVGJCE1r9kbl-Yn0bwmiVzycKWbv7Onx2bC5Pn3Thjl8FVTye9Br_m8kutH6EeWi4hpw9qOnZPjSqlySqzmnRhKdSdYvuOvkNKtvvX6gjHYfFaaWQhag3H6-3jjJysVhU5p92lx_yRZoL7rYmykuaeNGCl97tqNsPquIJwTSOyDIQGWOZIomIOdUSJzgTmlhwZsoQYU-ySBWRhAvKZWTNIoUKUxPx1HAWZ5qHyQHUZ_OZPgQkMcUqlNY1SxS2kEftnWjfYanm2sSRMkfQdCs0-SjzY0yqxTn-e_gCtvujx8FkcJ8_nMCOM0dJvTqF-nKx0mewJT-X02Jx7s37DW_4pw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Social+GAN%3A+Socially+Acceptable+Trajectories+with+Generative+Adversarial+Networks&rft.au=Gupta%2C+Agrim&rft.au=Johnson%2C+Justin&rft.au=Fei-Fei%2C+Li&rft.au=Savarese%2C+Silvio&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2255&rft.epage=2264&rft_id=info:doi/10.1109%2FCVPR.2018.00240&rft.externalDocID=8578338