Information Flow Control for Distributed Trusted Execution Environments

Distributed applications cannot assume that their security policies will be enforced on untrusted hosts. Trusted execution environments (TEEs) combined with cryptographic mechanisms enable execution of known code on an untrusted host and the exchange of confidential and authenticated messages with i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Security Foundations Symposium) s. 304 - 30414
Hlavní autoři: Gollamudi, Anitha, Chong, Stephen, Arden, Owen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2019
Témata:
ISSN:2374-8303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distributed applications cannot assume that their security policies will be enforced on untrusted hosts. Trusted execution environments (TEEs) combined with cryptographic mechanisms enable execution of known code on an untrusted host and the exchange of confidential and authenticated messages with it. TEEs do not, however, establish the trustworthiness of code executing in a TEE. Thus, developing secure applications using TEEs requires specialized expertise and careful auditing. This paper presents DFLATE, a core security calculus for distributed applications with TEEs. DFLATE offers high-level abstractions that reflect both the guarantees and limitations of the underlying security mechanisms they are based on. The accuracy of these abstractions is exhibited by asymmetry between confidentiality and integrity in our formal results: DFLATE enforces a strong form of noninterference for confidentiality, but only a weak form for integrity. This reflects the asymmetry of the security guarantees of a TEE: a malicious host cannot access secrets in the TEE or modify its contents, but they can suppress or manipulate the sequence of its inputs and outputs. Therefore DFLATE cannot protect against the suppression of high-integrity messages, but when these messages are delivered, their contents cannot have been influenced by an attacker.
ISSN:2374-8303
DOI:10.1109/CSF.2019.00028