Bandit-based Variable Fixing for Binary Optimization on GPU Parallel Computing
This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel appro...
Uložené v:
| Vydané v: | Proceedings - Euromicro Workshop on Parallel and Distributed Processing s. 154 - 158 |
|---|---|
| Hlavný autor: | |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.03.2023
|
| Predmet: | |
| ISSN: | 2377-5750 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to fix with the maximum expected reward, and executes a metaheuristic at the same time. The bandit-based approach is then extended to fix multiple variables. To accelerate solving multi-armed bandit problem, we implement a parallel algorithm for BVF on a GPU. Our results suggest that our proposed BVF enhances original metaheuristics. |
|---|---|
| AbstractList | This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to fix with the maximum expected reward, and executes a metaheuristic at the same time. The bandit-based approach is then extended to fix multiple variables. To accelerate solving multi-armed bandit problem, we implement a parallel algorithm for BVF on a GPU. Our results suggest that our proposed BVF enhances original metaheuristics. |
| Author | Yasudo, Ryota |
| Author_xml | – sequence: 1 givenname: Ryota surname: Yasudo fullname: Yasudo, Ryota email: yasudo@i.kyoto-u.ac.jp organization: Graduate School of Informatics, Kyoto University,Kyoto,Japan,606-8501 |
| BookMark | eNotjlFLwzAUhaMouM39An3IH2i9yW2S5tFNN4Xh-uB8HTdtIpGuLW0F9ddbUDhwXr7zcebsomkbz9iNgFQIsHfFQ6EsSJVKkJgCAIoztrTG5qgA0WgU52wm0ZhEGQVXbD4MHxNmMmln7GVFTRXHxNHgK_5GfSRXe76JX7F556Ht-So21H_zfTfGU_yhMbYNn7ItDrygnura13zdnrrPcVpcs8tA9eCX_71gh83j6_op2e23z-v7XRKlyMaEPGihqjIPXpdOem-szp02VgHIXKvMaVcapYMpSxWUQofGkaEMUYdAHhfs9s8bvffHro-n6eNRgEBtEfEXBHVQrw |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PDP59025.2023.00031 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798350337631 |
| EISSN | 2377-5750 |
| EndPage | 158 |
| ExternalDocumentID | 10136933 |
| Genre | orig-research |
| GroupedDBID | 29N 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i214t-ae0615dc8fe6cb2ee7968b67950028654b6bc756f7cc5f553b37ba7a4336ffae3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:19:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i214t-ae0615dc8fe6cb2ee7968b67950028654b6bc756f7cc5f553b37ba7a4336ffae3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10136933 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - Euromicro Workshop on Parallel and Distributed Processing |
| PublicationTitleAbbrev | PDP |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0007429 |
| Score | 1.8387278 |
| Snippet | This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 154 |
| SubjectTerms | decision making GPGPU Graphics processing units Linear programming Metaheuristics multi-armed bandit problem Parallel algorithms quadratic unconstrained binary optimization Reinforcement learning Search problems |
| Title | Bandit-based Variable Fixing for Binary Optimization on GPU Parallel Computing |
| URI | https://ieeexplore.ieee.org/document/10136933 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWl6SO7XgtUBhQyUBRt8ofF6kStKhNET8fn5MWFgakDFEkO5JP9r1n-90j5DoB7zR4yQIWDQRFGc1ycBnzVnjQAc9aH4XCT2o0yicTXTRi9aiFAYB4-Qx6-BrP8v3CrXGrLMzwlMvAwFukpZSsxVrbZTdwPN2UFUoTfVPcFViZRPTQHxyrFKKN3C8DlZg_hp1__nmfdH-UeLTY5pgDsgPzQ9LZWDHQZmYekdEA5SkVw6Tk6WsgwCiJosPZV2hGAzClgyi8pc9hiXhvtJc0PA_FmBZmiY4qb7TuN7TokvHw_uX2kTVWCWzWT7OKGUBo4l1egnS2D6C0zK1UWiCpkiKz0jolZKmcE6UQ3HJljTIZ57IsDfBj0p4v5nBCKM9MmgDiNK4zK7gOiCZPYuLXlqf2lHRxfKYfdTWM6WZozv74fk72MAT1va0L0q6Wa7gku-6zmq2WVzGG33d5nOc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSEPzD-tgevw42u7XpFRYw4dwDDjaztW0KCYHAY_3z7ykAvHkx2WJa0S_rSvu9r-72PkOsQrFFgReCwqCMoMldBAiYOrOYWlMOz2nqhcE-maTIcqqwSq3stDAD4y2fQxFd_lm9nZoFbZW6GR0w4Br5JttA6q5JrrRdex_JUVVgoCtVNdpdhbRLeRIdwrFOIRnK_LFR8BunU__nvPdL40eLRbJ1l9skGTA9IfWXGQKu5eUjSNgpUygDTkqWvjgKjKIp2xl-uGXXQlLa99Ja-uEXirVJfUvc8ZAOa5XP0VJnQZb-uRYMMOvf9225QmSUE41YUl0EOCE6sSQoQRrcApBKJFlJxpFWCx1poI7kopDG84JxpJnUu85gxURQ5sCNSm86mcEwoi_MoBERqTMWaM-UwTRL61K80i_QJaeD4jN6X9TBGq6E5_eP7Fdnp9p97o95j-nRGdjEc_hYXOye1cr6AC7JtPsvxx_zSx_Mb1tSgMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Euromicro+Workshop+on+Parallel+and+Distributed+Processing&rft.atitle=Bandit-based+Variable+Fixing+for+Binary+Optimization+on+GPU+Parallel+Computing&rft.au=Yasudo%2C+Ryota&rft.date=2023-03-01&rft.pub=IEEE&rft.eissn=2377-5750&rft.spage=154&rft.epage=158&rft_id=info:doi/10.1109%2FPDP59025.2023.00031&rft.externalDocID=10136933 |