Bandit-based Variable Fixing for Binary Optimization on GPU Parallel Computing

This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel appro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings - Euromicro Workshop on Parallel and Distributed Processing s. 154 - 158
Hlavný autor: Yasudo, Ryota
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2023
Predmet:
ISSN:2377-5750
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to fix with the maximum expected reward, and executes a metaheuristic at the same time. The bandit-based approach is then extended to fix multiple variables. To accelerate solving multi-armed bandit problem, we implement a parallel algorithm for BVF on a GPU. Our results suggest that our proposed BVF enhances original metaheuristics.
AbstractList This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which have recently attracted attention as a solver for a wide range of combinatorial optimization problems. In particular, we introduce a novel approach called the bandit-based variable fixing (BVF). The key idea behind BVF is to regard an execution of an arbitrary metaheuristic with a variable fixed as a play of a slot machine. Thus, BVF explores variables to fix with the maximum expected reward, and executes a metaheuristic at the same time. The bandit-based approach is then extended to fix multiple variables. To accelerate solving multi-armed bandit problem, we implement a parallel algorithm for BVF on a GPU. Our results suggest that our proposed BVF enhances original metaheuristics.
Author Yasudo, Ryota
Author_xml – sequence: 1
  givenname: Ryota
  surname: Yasudo
  fullname: Yasudo, Ryota
  email: yasudo@i.kyoto-u.ac.jp
  organization: Graduate School of Informatics, Kyoto University,Kyoto,Japan,606-8501
BookMark eNotjlFLwzAUhaMouM39An3IH2i9yW2S5tFNN4Xh-uB8HTdtIpGuLW0F9ddbUDhwXr7zcebsomkbz9iNgFQIsHfFQ6EsSJVKkJgCAIoztrTG5qgA0WgU52wm0ZhEGQVXbD4MHxNmMmln7GVFTRXHxNHgK_5GfSRXe76JX7F556Ht-So21H_zfTfGU_yhMbYNn7ItDrygnura13zdnrrPcVpcs8tA9eCX_71gh83j6_op2e23z-v7XRKlyMaEPGihqjIPXpdOem-szp02VgHIXKvMaVcapYMpSxWUQofGkaEMUYdAHhfs9s8bvffHro-n6eNRgEBtEfEXBHVQrw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PDP59025.2023.00031
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350337631
EISSN 2377-5750
EndPage 158
ExternalDocumentID 10136933
Genre orig-research
GroupedDBID 29N
29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i214t-ae0615dc8fe6cb2ee7968b67950028654b6bc756f7cc5f553b37ba7a4336ffae3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i214t-ae0615dc8fe6cb2ee7968b67950028654b6bc756f7cc5f553b37ba7a4336ffae3
PageCount 5
ParticipantIDs ieee_primary_10136933
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings - Euromicro Workshop on Parallel and Distributed Processing
PublicationTitleAbbrev PDP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0007429
Score 1.8387278
Snippet This paper explores whether reinforcement learning is capable of enhancing metaheuristics for the quadratic unconstrained binary optimization (QUBO), which...
SourceID ieee
SourceType Publisher
StartPage 154
SubjectTerms decision making
GPGPU
Graphics processing units
Linear programming
Metaheuristics
multi-armed bandit problem
Parallel algorithms
quadratic unconstrained binary optimization
Reinforcement learning
Search problems
Title Bandit-based Variable Fixing for Binary Optimization on GPU Parallel Computing
URI https://ieeexplore.ieee.org/document/10136933
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcBUPor4lgdWl6SO7XgtUBhQyUBRt8ofF6kStKhNET8fn5MWFgakDFEkO5JP9r1n-90j5DoB7zR4yQIWDQRFGc1ycBnzVnjQAc9aH4XCT2o0yicTXTRi9aiFAYB4-Qx6-BrP8v3CrXGrLMzwlMvAwFukpZSsxVrbZTdwPN2UFUoTfVPcFViZRPTQHxyrFKKN3C8DlZg_hp1__nmfdH-UeLTY5pgDsgPzQ9LZWDHQZmYekdEA5SkVw6Tk6WsgwCiJosPZV2hGAzClgyi8pc9hiXhvtJc0PA_FmBZmiY4qb7TuN7TokvHw_uX2kTVWCWzWT7OKGUBo4l1egnS2D6C0zK1UWiCpkiKz0jolZKmcE6UQ3HJljTIZ57IsDfBj0p4v5nBCKM9MmgDiNK4zK7gOiCZPYuLXlqf2lHRxfKYfdTWM6WZozv74fk72MAT1va0L0q6Wa7gku-6zmq2WVzGG33d5nOc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSEPzD-tgevw42u7XpFRYw4dwDDjaztW0KCYHAY_3z7ykAvHkx2WJa0S_rSvu9r-72PkOsQrFFgReCwqCMoMldBAiYOrOYWlMOz2nqhcE-maTIcqqwSq3stDAD4y2fQxFd_lm9nZoFbZW6GR0w4Br5JttA6q5JrrRdex_JUVVgoCtVNdpdhbRLeRIdwrFOIRnK_LFR8BunU__nvPdL40eLRbJ1l9skGTA9IfWXGQKu5eUjSNgpUygDTkqWvjgKjKIp2xl-uGXXQlLa99Ja-uEXirVJfUvc8ZAOa5XP0VJnQZb-uRYMMOvf9225QmSUE41YUl0EOCE6sSQoQRrcApBKJFlJxpFWCx1poI7kopDG84JxpJnUu85gxURQ5sCNSm86mcEwoi_MoBERqTMWaM-UwTRL61K80i_QJaeD4jN6X9TBGq6E5_eP7Fdnp9p97o95j-nRGdjEc_hYXOye1cr6AC7JtPsvxx_zSx_Mb1tSgMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+Euromicro+Workshop+on+Parallel+and+Distributed+Processing&rft.atitle=Bandit-based+Variable+Fixing+for+Binary+Optimization+on+GPU+Parallel+Computing&rft.au=Yasudo%2C+Ryota&rft.date=2023-03-01&rft.pub=IEEE&rft.eissn=2377-5750&rft.spage=154&rft.epage=158&rft_id=info:doi/10.1109%2FPDP59025.2023.00031&rft.externalDocID=10136933