Unique Decoding of Explicit \varepsilon-balanced Codes Near the Gilbert-Varshamov Bound
The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced...
Saved in:
| Published in: | Proceedings / annual Symposium on Foundations of Computer Science pp. 434 - 445 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English Japanese |
| Published: |
IEEE
01.11.2020
|
| Subjects: | |
| ISSN: | 2575-8454 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced binary codes, where any two distinct codewords are at a distance between 1/2-\varepsilon/2 and 1/2+\varepsilon/2 , achieving a near optimal rate of \Omega(\varepsilon^{2+\beta}) , where \beta\rightarrow 0 as \varepsilon\rightarrow 0 . We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for \varepsilon -balanced codes with block length N and rate \Omega(\varepsilon^{2+\beta}) in this family: -For all \varepsilon,\beta > 0 , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N^{O_{\varepsilon,\beta}(1)} . -For any fixed constant \beta independent of \varepsilon , there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (\log(1/\varepsilon))^{O(1)}\cdot N^{O_{\beta}(1)} . -For any \varepsilon > 0 , there are explicit \varepsilon -balanced codes with rate \Omega(\varepsilon^{2+\beta}) which can be list decoded up to error 1/2-\varepsilon^{\prime} in time N^{\mathrm{O}_{\varepsilon,\varepsilon^{\prime},\beta}(1)} , where \varepsilon^{\prime},\beta\rightarrow 0 as \varepsilon\rightarrow 0 . The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in \varepsilon . Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction. |
|---|---|
| AbstractList | The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced binary codes, where any two distinct codewords are at a distance between 1/2-\varepsilon/2 and 1/2+\varepsilon/2 , achieving a near optimal rate of \Omega(\varepsilon^{2+\beta}) , where \beta\rightarrow 0 as \varepsilon\rightarrow 0 . We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for \varepsilon -balanced codes with block length N and rate \Omega(\varepsilon^{2+\beta}) in this family: -For all \varepsilon,\beta > 0 , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N^{O_{\varepsilon,\beta}(1)} . -For any fixed constant \beta independent of \varepsilon , there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (\log(1/\varepsilon))^{O(1)}\cdot N^{O_{\beta}(1)} . -For any \varepsilon > 0 , there are explicit \varepsilon -balanced codes with rate \Omega(\varepsilon^{2+\beta}) which can be list decoded up to error 1/2-\varepsilon^{\prime} in time N^{\mathrm{O}_{\varepsilon,\varepsilon^{\prime},\beta}(1)} , where \varepsilon^{\prime},\beta\rightarrow 0 as \varepsilon\rightarrow 0 . The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in \varepsilon . Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction. |
| Author | Quintana, Dylan Tulsiani, Madhur Jeronimo, Fernando Granha Srivastava, Shashank |
| Author_xml | – sequence: 1 givenname: Fernando Granha surname: Jeronimo fullname: Jeronimo, Fernando Granha email: granha@uchicago.edu organization: University of Chicago,Chicago,USA – sequence: 2 givenname: Dylan surname: Quintana fullname: Quintana, Dylan email: dquintana@uchicago.edu organization: University of Chicago,Chicago,USA – sequence: 3 givenname: Shashank surname: Srivastava fullname: Srivastava, Shashank email: shashanks@ttic.edu organization: Toyota Technological Institute,Chicago,USA – sequence: 4 givenname: Madhur surname: Tulsiani fullname: Tulsiani, Madhur email: madhurt@ttic.edu organization: Toyota Technological Institute,Chicago,USA |
| BookMark | eNotjs1OAjEYAKvRRECfQA99gcWvf7vtUVdAEyIHRS8mpLRfpWZpcXch-vaa6Gkuk8kMyUnKCQm5YjBmDMz1dFE_ybICGHPgMAYAqY_IkFVcM1NyJo7JgKtKFVoqeUaGXffxq4ACOSCvyxQ_90jv0GUf0zvNgU6-dk10sadvB9virotNTsXaNjY59LTOHjv6iLal_QbpLDZrbPvixbbdxm7zgd7mffLn5DTYpsOLf47Icjp5ru-L-WL2UN_Mi_j71ReG-TJIDmi1ZhicAOXWDDUECR60l1wxZGCD4CyUlbMSEEzQzDsjlAxiRC7_uhERV7s2bm37vTKCVUaW4ge3YlM4 |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS46700.2020.00048 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1728196213 9781728196213 |
| EISSN | 2575-8454 |
| EndPage | 445 |
| ExternalDocumentID | 9317946 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: CCF-1816372,CCF-1816372 funderid: 10.13039/100000001 |
| GroupedDBID | --Z 29O 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i213t-91d6f420ea881efc305cb1e80f40d08d4251e10af321f67ca40e09f81dc9354f3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:20:48 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i213t-91d6f420ea881efc305cb1e80f40d08d4251e10af321f67ca40e09f81dc9354f3 |
| OpenAccessLink | https://cir.nii.ac.jp/crid/1871991017877197056 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_9317946 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / annual Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 |
| Score | 2.19257 |
| Snippet | The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 434 |
| SubjectTerms | Binary codes coding theory Decoding Encoding Iterative decoding Iterative methods Linear codes sdp sum of squares Task analysis |
| Title | Unique Decoding of Explicit \varepsilon-balanced Codes Near the Gilbert-Varshamov Bound |
| URI | https://ieeexplore.ieee.org/document/9317946 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AeNCLP8D4Oz14dNJuj3W9iqIHRRIFOZiQrX0NS3QjbPD32w7EmHjx1jRNm7Svr33t932PkEtAUHGUOByOjD0bf6EnBU88AwIZSqGSCiA7ehT9fjQey0GNXG24MIhYgc_w2hWrv3ydq4V7KmvLwJlPWCd1IcIVV-vb69p7B4M1NY4z2e49d1_AUVBsCOizSpMz-pVApTo_erv_G3mPtH6IeHSwOWL2SQ2zA7LztJFaLZrkbVhJsNJbG0e6RjQ31AHrUpWW9H0Zz3FWpB955iUOxKhQ026usaB9a-LU9kPvUydzVXojG-JO4898SW9cqqUWGfbuXrsP3jpbgpf6PCit19KhAZ9hHEUcjbIbWSUcI2aAaRZpuzk5chabwOcmFCoGhkwae19VMuiACQ5JI8szPCLU-m-BibK-pyMBbKvASCM1AoDuBCEck6aboslsJYgxWc_Oyd_Vp2TbrcGKwHdGGuV8gedkSy3LtJhfVKv4BVIynpo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNFEv_kDjb3vw6KTbyrZeRREjTBIBOZiQrX2NS3QjbPD32w7EmHjx1jRNm7y2r33t930P4IohE1EQGxwOjywdf6HFfTu2FPORIvdFXAJkhx0_DIPRiPcqcL3iwiBiCT7DG1Ms__JlJmbmqazOXbN8vDVYbzDm0AVb69vv6psHZUtynE15vfXcfGGGhKKDQIeWqpzBrxQq5QnS2vnf2Ltw8EPFI73VIbMHFUz3Ybu7ElvNa_A6KEVYyZ2OJE0jkilioHWJSAryNo-mOMmTjyy1YgNjFChJM5OYk1AvcqL7IQ-JEboqrKEOct-jz2xObk2ypQMYtO77zba1zJdgJY7tFtpvSU9pu2AUBDYqobeyiG0MqGJU0kDq7WmjTSPlOrbyfBExipQrfWMV3G0w5R5CNc1SPAKiPbiPsdDep8EZ061cxRWXyBiTDddjx1AzJhpPFpIY46V1Tv6uvoTNdr_bGXcew6dT2DLzsaDznUG1mM7wHDbEvEjy6UU5o1_BmqHh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Unique+Decoding+of+Explicit+%5Cvarepsilon-balanced+Codes+Near+the+Gilbert-Varshamov+Bound&rft.au=Jeronimo%2C+Fernando+Granha&rft.au=Quintana%2C+Dylan&rft.au=Srivastava%2C+Shashank&rft.au=Tulsiani%2C+Madhur&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=434&rft.epage=445&rft_id=info:doi/10.1109%2FFOCS46700.2020.00048&rft.externalDocID=9317946 |