Unique Decoding of Explicit \varepsilon-balanced Codes Near the Gilbert-Varshamov Bound

The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / annual Symposium on Foundations of Computer Science s. 434 - 445
Hlavní autoři: Jeronimo, Fernando Granha, Quintana, Dylan, Srivastava, Shashank, Tulsiani, Madhur
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 01.11.2020
Témata:
ISSN:2575-8454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced binary codes, where any two distinct codewords are at a distance between 1/2-\varepsilon/2 and 1/2+\varepsilon/2 , achieving a near optimal rate of \Omega(\varepsilon^{2+\beta}) , where \beta\rightarrow 0 as \varepsilon\rightarrow 0 . We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for \varepsilon -balanced codes with block length N and rate \Omega(\varepsilon^{2+\beta}) in this family: -For all \varepsilon,\beta > 0 , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N^{O_{\varepsilon,\beta}(1)} . -For any fixed constant \beta independent of \varepsilon , there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (\log(1/\varepsilon))^{O(1)}\cdot N^{O_{\beta}(1)} . -For any \varepsilon > 0 , there are explicit \varepsilon -balanced codes with rate \Omega(\varepsilon^{2+\beta}) which can be list decoded up to error 1/2-\varepsilon^{\prime} in time N^{\mathrm{O}_{\varepsilon,\varepsilon^{\prime},\beta}(1)} , where \varepsilon^{\prime},\beta\rightarrow 0 as \varepsilon\rightarrow 0 . The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in \varepsilon . Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction.
AbstractList The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where an upper bound of O(\varepsilon^{2}\log(1/\varepsilon)) is known). Ta-Shma [STOC 2017] gave an explicit construction of \varepsilon -balanced binary codes, where any two distinct codewords are at a distance between 1/2-\varepsilon/2 and 1/2+\varepsilon/2 , achieving a near optimal rate of \Omega(\varepsilon^{2+\beta}) , where \beta\rightarrow 0 as \varepsilon\rightarrow 0 . We develop unique and list decoding algorithms for (a slight modification of) the family of codes constructed by Ta-Shma, in the adversarial error model. We prove the following results for \varepsilon -balanced codes with block length N and rate \Omega(\varepsilon^{2+\beta}) in this family: -For all \varepsilon,\beta > 0 , there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time N^{O_{\varepsilon,\beta}(1)} . -For any fixed constant \beta independent of \varepsilon , there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time (\log(1/\varepsilon))^{O(1)}\cdot N^{O_{\beta}(1)} . -For any \varepsilon > 0 , there are explicit \varepsilon -balanced codes with rate \Omega(\varepsilon^{2+\beta}) which can be list decoded up to error 1/2-\varepsilon^{\prime} in time N^{\mathrm{O}_{\varepsilon,\varepsilon^{\prime},\beta}(1)} , where \varepsilon^{\prime},\beta\rightarrow 0 as \varepsilon\rightarrow 0 . The starting point of our algorithms is the framework for list decoding direct-sum codes develop in Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in \varepsilon . Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shma's construction.
Author Quintana, Dylan
Tulsiani, Madhur
Jeronimo, Fernando Granha
Srivastava, Shashank
Author_xml – sequence: 1
  givenname: Fernando Granha
  surname: Jeronimo
  fullname: Jeronimo, Fernando Granha
  email: granha@uchicago.edu
  organization: University of Chicago,Chicago,USA
– sequence: 2
  givenname: Dylan
  surname: Quintana
  fullname: Quintana, Dylan
  email: dquintana@uchicago.edu
  organization: University of Chicago,Chicago,USA
– sequence: 3
  givenname: Shashank
  surname: Srivastava
  fullname: Srivastava, Shashank
  email: shashanks@ttic.edu
  organization: Toyota Technological Institute,Chicago,USA
– sequence: 4
  givenname: Madhur
  surname: Tulsiani
  fullname: Tulsiani, Madhur
  email: madhurt@ttic.edu
  organization: Toyota Technological Institute,Chicago,USA
BookMark eNotjs1OAjEYAKvRRECfQA99gcWvf7vtUVdAEyIHRS8mpLRfpWZpcXch-vaa6Gkuk8kMyUnKCQm5YjBmDMz1dFE_ybICGHPgMAYAqY_IkFVcM1NyJo7JgKtKFVoqeUaGXffxq4ACOSCvyxQ_90jv0GUf0zvNgU6-dk10sadvB9virotNTsXaNjY59LTOHjv6iLal_QbpLDZrbPvixbbdxm7zgd7mffLn5DTYpsOLf47Icjp5ru-L-WL2UN_Mi_j71ReG-TJIDmi1ZhicAOXWDDUECR60l1wxZGCD4CyUlbMSEEzQzDsjlAxiRC7_uhERV7s2bm37vTKCVUaW4ge3YlM4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS46700.2020.00048
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1728196213
9781728196213
EISSN 2575-8454
EndPage 445
ExternalDocumentID 9317946
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-1816372,CCF-1816372
  funderid: 10.13039/100000001
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i213t-91d6f420ea881efc305cb1e80f40d08d4251e10af321f67ca40e09f81dc9354f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i213t-91d6f420ea881efc305cb1e80f40d08d4251e10af321f67ca40e09f81dc9354f3
OpenAccessLink https://cir.nii.ac.jp/crid/1871991017877197056
PageCount 12
ParticipantIDs ieee_primary_9317946
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.1926727
Snippet The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance 1/2-\varepsilon and rate \Omega(\varepsilon^{2}) (where...
SourceID ieee
SourceType Publisher
StartPage 434
SubjectTerms Binary codes
coding theory
Decoding
Encoding
Iterative decoding
Iterative methods
Linear codes
sdp
sum of squares
Task analysis
Title Unique Decoding of Explicit \varepsilon-balanced Codes Near the Gilbert-Varshamov Bound
URI https://ieeexplore.ieee.org/document/9317946
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AeNCLDzC-04NHV_piH1dR9KBIoiAHE9LHNGyiu4Rd-P22C2JMvHhrm6ZNOtNOp53vG4QuuTMhOjYmkFJFgQgVCRIB1Oky4cpZcCarlCyjx6jfj8fjZFBDVxssDABUwWdw7YvVX77J9cI_lbUT7tUnrKN6FIUrrNb3qevuHUSsoXGUJO3ec_dFeAiKcwEZqTg5418JVCr70dv938x7qPUDxMODjYnZRzXIDtDO04ZqtWiit2FFwYpvnR_pO-HcYh9Yl-q0xO9LOYdZkX7kWaB8EKMGg7u5gQL3nYpjNw6-Tz3NVRmMnIs7lZ_5Et_4VEstNOzdvXYfgnW2hCBllJfu1DKhFYyAjGMKVruNrBWFmFhBDImN25wUKJGWM2rDSEtBgCTW3Vd1wjvC8kPUyPIMjhCW1ji_ykgOPBKWMcVcnSnTIcQwBeExavolmsxWhBiT9eqc_N18ira9DFYAvjPUKOcLOEdbelmmxfyikuIXXFSeeA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa1mqgXH9X4loNH17JA93G1Wmts1ya2tQeThoUhbqK7TXfb3y9sa42JF29ACCTDwDAw3zcIXTFjQmSglCNE7Dvci4kTcnCNLhMWGwtORZmSZdjxoygYjcJeBV2vsDAAUAafwY0tln_5KpMz-1RWD5lVH28NrTc4p2SB1vo-d83Ng_AlOM4lYb313HzhFoRinEBKSlbO4FcKldKCtHb-N_cuOviB4uHeysjsoQqk-2i7uyJbzWvodVCSsOI740naTjjT2IbWJTIp8NtcTGGSJx9Z6sQ2jFGCws1MQY4jo-TYjIMfEkt0VThD4-S-i89sjm9tsqUDNGjd95ttZ5kvwUmoywpzbilPG7mACAIXtDRbWcYuBERzokigzPZ0wSVCM-pqz5eCEyChNjdWGbIG1-wQVdMshSOEhVbGs1KCAfO5pjSmpk5j1SBE0Ri8Y1SzIhpPFpQY46V0Tv5uvkSb7X63M-48Rk-naMuuxwLOd4aqxXQG52hDzoskn16UK_oFyRShvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Unique+Decoding+of+Explicit+%5Cvarepsilon-balanced+Codes+Near+the+Gilbert-Varshamov+Bound&rft.au=Jeronimo%2C+Fernando+Granha&rft.au=Quintana%2C+Dylan&rft.au=Srivastava%2C+Shashank&rft.au=Tulsiani%2C+Madhur&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=434&rft.epage=445&rft_id=info:doi/10.1109%2FFOCS46700.2020.00048&rft.externalDocID=9317946