Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization

Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used beca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP) s. 119 - 126
Hlavní autoři: Chakroun, Imen, Haber, Tom, Aa, Tom Vander, Kovac, Thomas
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.2016
Témata:
ISSN:2377-5750
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2377-5750
DOI:10.1109/PDP.2016.48