Distributed asynchronous modulation classification based on hybrid maximum likelihood approach

In this paper, we consider the problem of automatic modulation classification (AMC) with multiple sensors. A distributed hybrid maximum likelihood (HML) based algorithm in the presence of unknown time offset, phase offset and channel gain is presented. The proposed distributed algorithm that employs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MILCOM 2015 2015 IEEE Military Communications Conference S. 1519 - 1523
Hauptverfasser: Wimalajeewa, Thakshila, Jagannath, Jithin, Varshney, Pramod K., Drozd, Andrew, Wei Su
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2015
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the problem of automatic modulation classification (AMC) with multiple sensors. A distributed hybrid maximum likelihood (HML) based algorithm in the presence of unknown time offset, phase offset and channel gain is presented. The proposed distributed algorithm that employs the generalized expectation maximization (GEM) algorithm is robust to initialization of unknown parameters, computationally efficient and require much less communication overhead compared to performing GEM in a centralized setting. Simulation and experimental results depict the efficacy of the proposed algorithm.
DOI:10.1109/MILCOM.2015.7357660