Distributed asynchronous modulation classification based on hybrid maximum likelihood approach

In this paper, we consider the problem of automatic modulation classification (AMC) with multiple sensors. A distributed hybrid maximum likelihood (HML) based algorithm in the presence of unknown time offset, phase offset and channel gain is presented. The proposed distributed algorithm that employs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:MILCOM 2015 2015 IEEE Military Communications Conference s. 1519 - 1523
Hlavní autori: Wimalajeewa, Thakshila, Jagannath, Jithin, Varshney, Pramod K., Drozd, Andrew, Wei Su
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2015
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider the problem of automatic modulation classification (AMC) with multiple sensors. A distributed hybrid maximum likelihood (HML) based algorithm in the presence of unknown time offset, phase offset and channel gain is presented. The proposed distributed algorithm that employs the generalized expectation maximization (GEM) algorithm is robust to initialization of unknown parameters, computationally efficient and require much less communication overhead compared to performing GEM in a centralized setting. Simulation and experimental results depict the efficacy of the proposed algorithm.
DOI:10.1109/MILCOM.2015.7357660