Seven Ways to Improve Example-Based Single Image Super Resolution
In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanc...
Uloženo v:
| Vydáno v: | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 1865 - 1873 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2016
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements. The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new stateof-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR.2016.206 |