Variational Depth Superresolution Using Example-Based Edge Representations

In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / IEEE International Conference on Computer Vision pp. 513 - 521
Main Authors: Ferstl, David, Ruther, Matthias, Bischof, Horst
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 01.12.2015
Subjects:
ISSN:2380-7504
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets.
AbstractList In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets.
Author Bischof, Horst
Ruther, Matthias
Ferstl, David
Author_xml – sequence: 1
  givenname: David
  surname: Ferstl
  fullname: Ferstl, David
  email: ferstl@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 2
  givenname: Matthias
  surname: Ruther
  fullname: Ruther, Matthias
  email: ruether@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 3
  givenname: Horst
  surname: Bischof
  fullname: Bischof, Horst
  email: bischof@icg.tugraz.at
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
BookMark eNotjLFOwzAURQ0CibawsbFkZEl5z3Yce4S0QFElJKBdIzd-KUZpEuJEgr-nUKYrXZ1zxuykbmpi7BJhigjmZpFl6ykHTKZKHbExSpUKLQzCMRtxoSFOE5BnbBzCB4AwXKsRe1rbztveN7Wtohm1_Xv0OrTUdRSaavj9o1Xw9Taaf9ldW1F8ZwO5aO62FL1Qu8eo7v_8cM5OS1sFuvjfCVvdz9-yx3j5_LDIbpex56D7mAo0RgtJiDrZGEucDCgUmDjcSFkiKetS68hQ4UhpXSoi2pTglC2UADFh14du2zWfA4U-3_lQUFXZmpoh5KhRgTIAfI9eHVC_T-Rt53e2-85TiSC5ED9s01xY
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ICCV.2015.66
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1467383910
9781467383912
EISSN 2380-7504
EndPage 521
ExternalDocumentID 7410423
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-ec199834e1185b9ae2e9061315d1b44f1e6ad7ade9ecde688f6eeebf0d6ac6303
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380414100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Oct 01 14:00:19 EDT 2025
Wed Aug 27 01:57:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-ec199834e1185b9ae2e9061315d1b44f1e6ad7ade9ecde688f6eeebf0d6ac6303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1816069002
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1816069002
ieee_primary_7410423
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
ssib030089929
Score 2.2747695
Snippet In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 513
SubjectTerms Coding
Computer vision
Conferences
Dictionaries
Encoding
Energy resolution
Image edge detection
Image reconstruction
Mathematical models
Optimization
Spatial resolution
Title Variational Depth Superresolution Using Example-Based Edge Representations
URI https://ieeexplore.ieee.org/document/7410423
https://www.proquest.com/docview/1816069002
WOSCitedRecordID wos000380414100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIsoLxmJEbdJk9jJSmkFCFUVj6pb5McFuqRVkyB-Pr4kLQMsbJGlWPH54s_2fd8dIdcCsPoJD1gktGAYv2VKc5dF0pNCgwxVqXqfP4npNFwsolmD3Oy0MABQks-gj49lLN-sdIFXZQOLfkjjaJKmELzSam19x3MwfoVQX63CFvZDviO6R4OH0WiORK6gj_kQy0Iqv1bfElIm7f99zAHp_mjz6GyHOoekAekRadebSVr_qlmHPM7tKbi-6aN3sM4_6EuxBqzFUXsbLekCdPwlMUMwu7V4ZujYvAN9LumxtSopzbrkbTJ-Hd2zunACW1pj5ww0Kuc8H-zpIVCRhCFEiNtuYFzl-4kLXBohDUSgDfAwTLgdnkocw6XmFtSOSStdpXBCqLANvvZU4BgXY7TKhUjaTgJfD_0kVD3SQdPE6yo3RlxbpUeutraNrb9iEEKmsCqy2O4oOGZHdoanf796RvZxnirKyDlp5ZsCLsie_syX2eaynPRv84CuQg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhjxZ008OmBs67arCAFFQhQJt6Vr35TLILAZ_3z7toEHvXhbmqxZX9_6tX3f9x7ArYtU_YQ7hu9K16D4rRFKbhq-sIQrUXhhpnqfDt3RyJvN_HEJ7rZaGETMyGfYoMcslq8WMqWrsqZGP6Jx7MCuY-tuc7XWxnusFkWwCOzzdVgDv8e3VHe_Oeh0pkTlchqUETErpfJr_c1ApVf53-ccQu1HncfGW9w5ghLGx1AptpOs-FnXVXic6nNwcdfHHnCZfLDXdIlUjaPwN5YRBlj3S1COYONeI5piXfWO7CUjyBa6pHhdg7ded9LpG0XpBGOuzZ0YKEk7Z9mozw9O6Atso0_IbTrKDG07MpEL5QqFPkqF3PMirocXRi3FheQa1k6gHC9iPAXm6gZbWqHTUiZFaUMTfaE7cWzZtiMvrEOVTBMs8-wYQWGVOtxsbBtoj6UwhIhxka4DvafglB-51T77-9Vr2O9PnofBcDB6OocDmrOcQHIB5WSV4iXsyc9kvl5dZQ7wDS7BsYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Variational+Depth+Superresolution+Using+Example-Based+Edge+Representations&rft.au=Ferstl%2C+David&rft.au=Ruther%2C+Matthias&rft.au=Bischof%2C+Horst&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1109%2FICCV.2015.66&rft.externalDocID=7410423