Variational Depth Superresolution Using Example-Based Edge Representations
In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images a...
Saved in:
| Published in: | Proceedings / IEEE International Conference on Computer Vision pp. 513 - 521 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding Journal Article |
| Language: | English |
| Published: |
IEEE
01.12.2015
|
| Subjects: | |
| ISSN: | 2380-7504 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets. |
|---|---|
| AbstractList | In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational superresolution based on a known blur kernel. Most traditional depth superresolution approaches try to use additional high resolution intensity images as guidance for superresolution. In our method we learn a dictionary of edge priors from an external database of high and low resolution examples. In a novel variational sparse coding approach this dictionary is used to infer strong edge priors. Additionally to the traditional sparse coding constraints the difference in the overlap of neighboring edge patches is minimized in our optimization. These edge priors are used in a novel variational superresolution as anisotropic guidance of the higher order regularization. Both the sparse coding and the variational superresolution of the depth are solved based on a primal-dual formulation. In an exhaustive numerical and visual evaluation we show that our method clearly outperforms existing approaches on multiple real and synthetic datasets. |
| Author | Bischof, Horst Ruther, Matthias Ferstl, David |
| Author_xml | – sequence: 1 givenname: David surname: Ferstl fullname: Ferstl, David email: ferstl@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 2 givenname: Matthias surname: Ruther fullname: Ruther, Matthias email: ruether@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 3 givenname: Horst surname: Bischof fullname: Bischof, Horst email: bischof@icg.tugraz.at organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria |
| BookMark | eNotjLFOwzAURQ0CibawsbFkZEl5z3Yce4S0QFElJKBdIzd-KUZpEuJEgr-nUKYrXZ1zxuykbmpi7BJhigjmZpFl6ykHTKZKHbExSpUKLQzCMRtxoSFOE5BnbBzCB4AwXKsRe1rbztveN7Wtohm1_Xv0OrTUdRSaavj9o1Xw9Taaf9ldW1F8ZwO5aO62FL1Qu8eo7v_8cM5OS1sFuvjfCVvdz9-yx3j5_LDIbpex56D7mAo0RgtJiDrZGEucDCgUmDjcSFkiKetS68hQ4UhpXSoi2pTglC2UADFh14du2zWfA4U-3_lQUFXZmpoh5KhRgTIAfI9eHVC_T-Rt53e2-85TiSC5ED9s01xY |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/ICCV.2015.66 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1467383910 9781467383912 |
| EISSN | 2380-7504 |
| EndPage | 521 |
| ExternalDocumentID | 7410423 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-ec199834e1185b9ae2e9061315d1b44f1e6ad7ade9ecde688f6eeebf0d6ac6303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380414100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Oct 01 14:00:19 EDT 2025 Wed Aug 27 01:57:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-ec199834e1185b9ae2e9061315d1b44f1e6ad7ade9ecde688f6eeebf0d6ac6303 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1816069002 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1816069002 ieee_primary_7410423 |
| PublicationCentury | 2000 |
| PublicationDate | 20151201 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 20151201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 ssib030089929 |
| Score | 2.2747695 |
| Snippet | In this paper we propose a novel method for depth image superresolution which combines recent advances in example based upsampling with variational... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 513 |
| SubjectTerms | Coding Computer vision Conferences Dictionaries Encoding Energy resolution Image edge detection Image reconstruction Mathematical models Optimization Spatial resolution |
| Title | Variational Depth Superresolution Using Example-Based Edge Representations |
| URI | https://ieeexplore.ieee.org/document/7410423 https://www.proquest.com/docview/1816069002 |
| WOSCitedRecordID | wos000380414100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIsoLxmJEbdJk9jJSmkFCFUVj6pb5McFuqRVkyB-Pr4kLQMsbJGlWPH54s_2fd8dIdcCsPoJD1gktGAYv2VKc5dF0pNCgwxVqXqfP4npNFwsolmD3Oy0MABQks-gj49lLN-sdIFXZQOLfkjjaJKmELzSam19x3MwfoVQX63CFvZDviO6R4OH0WiORK6gj_kQy0Iqv1bfElIm7f99zAHp_mjz6GyHOoekAekRadebSVr_qlmHPM7tKbi-6aN3sM4_6EuxBqzFUXsbLekCdPwlMUMwu7V4ZujYvAN9LumxtSopzbrkbTJ-Hd2zunACW1pj5ww0Kuc8H-zpIVCRhCFEiNtuYFzl-4kLXBohDUSgDfAwTLgdnkocw6XmFtSOSStdpXBCqLANvvZU4BgXY7TKhUjaTgJfD_0kVD3SQdPE6yo3RlxbpUeutraNrb9iEEKmsCqy2O4oOGZHdoanf796RvZxnirKyDlp5ZsCLsie_syX2eaynPRv84CuQg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhjxZ008OmBs67arCAFFQhQJt6Vr35TLILAZ_3z7toEHvXhbmqxZX9_6tX3f9x7ArYtU_YQ7hu9K16D4rRFKbhq-sIQrUXhhpnqfDt3RyJvN_HEJ7rZaGETMyGfYoMcslq8WMqWrsqZGP6Jx7MCuY-tuc7XWxnusFkWwCOzzdVgDv8e3VHe_Oeh0pkTlchqUETErpfJr_c1ApVf53-ccQu1HncfGW9w5ghLGx1AptpOs-FnXVXic6nNwcdfHHnCZfLDXdIlUjaPwN5YRBlj3S1COYONeI5piXfWO7CUjyBa6pHhdg7ded9LpG0XpBGOuzZ0YKEk7Z9mozw9O6Atso0_IbTrKDG07MpEL5QqFPkqF3PMirocXRi3FheQa1k6gHC9iPAXm6gZbWqHTUiZFaUMTfaE7cWzZtiMvrEOVTBMs8-wYQWGVOtxsbBtoj6UwhIhxka4DvafglB-51T77-9Vr2O9PnofBcDB6OocDmrOcQHIB5WSV4iXsyc9kvl5dZQ7wDS7BsYk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Variational+Depth+Superresolution+Using+Example-Based+Edge+Representations&rft.au=Ferstl%2C+David&rft.au=Ruther%2C+Matthias&rft.au=Bischof%2C+Horst&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1109%2FICCV.2015.66&rft.externalDocID=7410423 |