An Intelligent Diagnosis Flu System Based on Adaptive Neuro-Fuzzy Classifer

This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an in...

Full description

Saved in:
Bibliographic Details
Published in:International Symposium on Computing and Networking (Online) pp. 547 - 550
Main Authors: Hsieh, Sheng-Ta, Lin, Chun-Ling
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 01.12.2015
Subjects:
ISSN:2379-1896
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an intelligent diagnosis flu system. Gaussian membership function is used for fuzzy set descriptions. Leave-one-subject-out (LOSO) cross-validation is used to estimate the performance of three neuro-fuzzy classifiers. The results shows NFCSCG, NFCLF and LHNFCSF achieved the high accuracy of 100% in the training data. In the testing data, the overall accuracies of LHNFCSF achieved 100%, which is superior to other methods. Thus, this study suggests that LHNFCSF in the intelligent diagnosis flu system can provide a preliminary result to physicians so that the doctor could quickly and accurately decide whether patient have cold or flu.
AbstractList This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG), neuro-fuzzy classifier with linguistic hedges (NFCLH) and linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF) to develop an intelligent diagnosis flu system. Gaussian membership function is used for fuzzy set descriptions. Leave-one-subject-out (LOSO) cross-validation is used to estimate the performance of three neuro-fuzzy classifiers. The results shows NFCSCG, NFCLF and LHNFCSF achieved the high accuracy of 100% in the training data. In the testing data, the overall accuracies of LHNFCSF achieved 100%, which is superior to other methods. Thus, this study suggests that LHNFCSF in the intelligent diagnosis flu system can provide a preliminary result to physicians so that the doctor could quickly and accurately decide whether patient have cold or flu.
Author Sheng-Ta Hsieh
Chun-Ling Lin
Author_xml – sequence: 1
  givenname: Sheng-Ta
  surname: Hsieh
  fullname: Hsieh, Sheng-Ta
– sequence: 2
  givenname: Chun-Ling
  surname: Lin
  fullname: Lin, Chun-Ling
BookMark eNotjztPwzAYRQ0CCShdWVg8sqTYjp9jaClUVEXiMUdO_LmylDolTpDaX0-kMt3l6FydG3QR2wgI3VEyo5SYx3mxWRQfM0aomOX6DE2N0pRLlRtlFD1H1yxXJqPayCs0TSlUhEklBZH0Gr0VEa9iD00TthB7vAh2G9sUEl42A_48pB52-MkmcLiNuHB234dfwBsYujZbDsfjAc8bO0o9dLfo0tsmwfR_J-h7-fw1f83W7y-rebHOAiO6z0A5CUJUhnvOnOBKsdwbrTx33IoxyHEHntBaCauAV5bWlZdMeucZF7rOJ-jh5N137c8AqS93IdVjgo3QDqmkmgqjhRFkRO9PaACAct-Fne0OpeJsfM3zP1ZMXVw
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CANDAR.2015.38
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467397971
1467397970
EISSN 2379-1896
EndPage 550
ExternalDocumentID 7424773
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-e7d6e55b94f42d547723f987f4d4a5109d4def01c75a7e4ba1cbf626fdf2458c3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399160300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 17:51:47 EDT 2025
Wed Aug 27 01:59:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-e7d6e55b94f42d547723f987f4d4a5109d4def01c75a7e4ba1cbf626fdf2458c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1815985950
PQPubID 23500
PageCount 4
ParticipantIDs ieee_primary_7424773
proquest_miscellaneous_1815985950
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle International Symposium on Computing and Networking (Online)
PublicationTitleAbbrev CANDAR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765061
ssj0003204063
Score 1.5906165
Snippet This study adopts existing three adaptive-neuro-fuzzy classifiers which are neuro-fuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG),...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 547
SubjectTerms Accuracy
Adaptive neuro-fuzzy classifer
Adaptive systems
Algorithms
Artificial intelligence
Artificial neural networks
Classifiers
Conjugate gradients
Diagnosis
Fuzzy logic
Influenza
Leave-one-subject-o
Linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF)
Linguistics
Neuro-fuzzy classifier with linguistic hedges (NFCLH)
Neurofuzzy classifier with a scaled conjugate gradient algorithm (NFCSCG)
Pragmatics
Testing
Training
Title An Intelligent Diagnosis Flu System Based on Adaptive Neuro-Fuzzy Classifer
URI https://ieeexplore.ieee.org/document/7424773
https://www.proquest.com/docview/1815985950
WOSCitedRecordID wos000399160300090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Mnf2zi_EUEj3brkrRJjnWzKMIYorBbSZsEBtKNrRXcX2_SdvOgF2-9BMJ7L-_lNd_3PYA7LlNOlWtLTEg9qrH2OBlRL5OcKWMCyZphE2w65fO5mLXgfs-F0VpX4DM9cJ_VW75aZqX7VTa0bRxljLShzVhYc7V2sYNDZu8aDUfTZWGCbXiGpNFpHPliOI6mk-jVobmCgaOjVNNUfqXgqq7ER__b0TH0fgh6aLYvPSfQ0vkpHO0mNKDmwHbhJcrR8150s0CTGli32KD4o0S1Wjl6sIVMoWWOIiVXLvuhSrHDi8vt9gtVUzMd_qUH7_Hj2_jJa8YneAvs88LTTIU6CFJBDcUqsPvExAjODFVU2qMoFFXa-KOMWY9omspRlhrb3xhlMA14Rs6gky9zfQ4oFJIRklGZpoZynwsslaYiJSa0CQLrPnSdbZJVrZCRNGbpw-3OuImNWvcUIXO9LDeJvVcEwkmr-Rd_L72EQ-eoGjhyBZ1iXeprOMg-i8VmfVO5_hv-aq7d
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gZ58VXwbwaPbbpPZTXKsrUVRi4hCb0t2k0BBtqXtCvrrTXa39aAXb7kEwmQyk0nm-z6AK6FSgdqXJTbGAA01gWBtDDIluLY2UrwWm-CDgRgO5fMKXC-xMMaYsvnMNP2w_MvX46zwT2UtV8Yh52wV1iNEGlZorYX30Ji720aN0vRxmFHnoDGrmRrboWx1O4Ne58X3c0VND0gp9VR-BeEys_S3_7emHWj8QPTI8zL57MKKyfdge6HRQOojuw8PnZzcL2k356RXtdaNZqT_XpCKr5zcuFSmyTgnHa0mPv6RkrMj6BdfX5-k1M30HTANeOvfvnbvglpAIRjRUMwDw3VsoiiVaJHqyK2TMisFt6hRucMoNWpjw3bG3Z4YTFU7S62rcKy2FCORsQNYy8e5OQQSS8UZy1ClqUURCkmVNihTZmMXIqg5gn1vm2RScWQktVmO4HJh3MT5rf-MULkZF7PE3Swi6cnVwuO_p17A5t3r02PyeD94OIEtv2lVG8kprM2nhTmDjexjPppNz0s3-AZD47Ik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=An+Intelligent+Diagnosis+Flu+System+Based+on+Adaptive+Neuro-Fuzzy+Classifer&rft.au=Sheng-Ta+Hsieh&rft.au=Chun-Ling+Lin&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=547&rft.epage=550&rft_id=info:doi/10.1109%2FCANDAR.2015.38&rft.externalDocID=7424773