Filtered channel features for pedestrian detection

This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore dif...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 1751 - 1760
Hlavní autoři: Zhang, Shanshan, Benenson, Rodrigo, Schiele, Bernt
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2015
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore different filter families. We report extensive results enabling a systematic analysis. Using filtered channel features we obtain top performance on the challenging Caltech and KITTI datasets, while using only HOG+LUV as low-level features. When adding optical flow features we further improve detection quality and report the best known results on the Caltech dataset, reaching 93% recall at 1 FPPI.
AbstractList This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore different filter families. We report extensive results enabling a systematic analysis. Using filtered channel features we obtain top performance on the challenging Caltech and KITTI datasets, while using only HOG+LUV as low-level features. When adding optical flow features we further improve detection quality and report the best known results on the Caltech dataset, reaching 93% recall at 1 FPPI.
Author Zhang, Shanshan
Benenson, Rodrigo
Schiele, Bernt
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Zhang
  fullname: Zhang, Shanshan
  email: shanshan.zhang@mpi-inf.mpg.de
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
– sequence: 2
  givenname: Rodrigo
  surname: Benenson
  fullname: Benenson, Rodrigo
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
– sequence: 3
  givenname: Bernt
  surname: Schiele
  fullname: Schiele, Bernt
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
BookMark eNpNkMFKAzEURaNUsK39AHEzSzdT30syyWQpxapQUETdDpnJCwammZpMF_69hXbR1b2Lw-FyZ2wSh0iM3SIsEcE8rL7fP5YcsFpqbmpdyws2Q6m0UEZJuGRTBCVKZdBMzvo1W-QcWhAAtTEcpoyvQz9SIld0PzZG6gtPdtwnyoUfUrEjR3lMwcbC0UjdGIZ4w6687TMtTjlnX-unz9VLuXl7fl09bsrAoR5LqrRRXlHLTSsdcG-FROuUtOCNqxA1kjW8E0p6qmroLCjDddtq7kAhF3N2f_Tu0vC7P8xotiF31Pc20rDPDWoNQlQo6wN6d0QDETW7FLY2_TWnZ8Q_-ZtWEw
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2015.7298784
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1467369640
9781467369640
EISSN 1063-6919
EndPage 1760
ExternalDocumentID 7298784
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-e5796f6eb29b4d02fa341ad64a0f9d51171ea92c364fe580ca06927bb72d06123
IEDL.DBID RIE
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959201084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Thu Sep 04 17:10:11 EDT 2025
Wed Aug 20 06:20:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-e5796f6eb29b4d02fa341ad64a0f9d51171ea92c364fe580ca06927bb72d06123
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1770335148
PQPubID 23500
PageCount 10
ParticipantIDs ieee_primary_7298784
proquest_miscellaneous_1770335148
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030089920
ssj0023720
ssj0003211698
Score 2.492484
Snippet This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1751
SubjectTerms Channels
Computer vision
Conferences
Decision trees
Detectors
Feature extraction
Filter banks
Filtering
Image color analysis
Optical filters
Optical flow
Pattern recognition
Pedestrians
Recall
Shape
Training
Title Filtered channel features for pedestrian detection
URI https://ieeexplore.ieee.org/document/7298784
https://www.proquest.com/docview/1770335148
WOSCitedRecordID wos000387959201084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIsoLwWJkbSO4_gxV1QMqKoQVN0iO75IlVBaNSm_H9t1ygALW2TlpfP57uzv7j6EHhWThmhIY1wwGlNm58KuoiQWDAPRpFDaM88tX_l8LlYrueigp2MtDAD45DMYu0uP5ZtNsXdHZRMbCAouaBd1OWeHWq1Wd1Ls8KsQ-jgrnNqdDZNHRIE4NhaPfLI0ZjKRAeFMsJxMl4s3l-SVjcMHAtPKL_Psfc6s_7-_PUPDn-K9aHF0S-eoA9UF6odoMwprubZDLaFDOzZAZLZ24Lm9zdUDV_AZleAbf9aRjW2jLRjwNB9VZKDxOVzVEH3Mnt-nL3EgVYjXBIsmBld8WjK7oZaaGkxKZf2YMowqXEpjwy-egJKkSBktIRO4UJhJwrXmxPheLZeoV20quEIR1VnmXpWlqqDW8inJElZixYSmCSnpCA2cVPLtoW9GHgQyQg-tWHOryw6gUBVs9nWecGt_XGmBuP770Rt06ubpkKp1i3rNbg936KT4atb17t4rxDc4prEz
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmugTKhjxcyY-Oui6rmufiQQjEmKQ8LZ02y0hMYOw4d9vWzZ80BfflmZfuV7vrv3d3Q_gUXGZ0hh9lyScuYzrudCryHMFJ0hjmqjYMs_Nx-FkIhYLOW3A074WBhFt8hn2zKXF8tNVsjVHZX0dCIpQsAM4DBijZFetVWuPTwyCVQU_xg77em_D5R5ToIaPxWKf3He59GSFcXpE9gfz6btJ8wp61ScqrpVfBtp6nWHrf_97Cp2f8j1nundMZ9DA_BxaVbzpVKu50EM1pUM91gY6XBr4XN9mKoJz_HQytK0_C0dHt84aU7REH7mTYmmzuPIOfAyfZ4ORW9EquEtKROmiKT_NuN5Sy5ilhGZKezKVcqZIJlMdgIUeKkkTn7MMA0ESRbikYRyHNLXdWi6gma9yvASHxUFgXhX4KmHa9inJPZ4RxUXMPJqxLrSNVKL1rnNGVAmkCw-1WCOtzQaiUDmutkXkhdoCmeICcfX3o_dwPJq9jaPxy-T1Gk7MnO0St26gWW62eAtHyVe5LDZ3Vjm-AaJOtHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Filtered+channel+features+for+pedestrian+detection&rft.au=Zhang%2C+Shanshan&rft.au=Benenson%2C+Rodrigo&rft.au=Schiele%2C+Bernt&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1751&rft.epage=1760&rft_id=info:doi/10.1109%2FCVPR.2015.7298784&rft.externalDocID=7298784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon