Filtered channel features for pedestrian detection
This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore dif...
Uloženo v:
| Vydáno v: | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 1751 - 1760 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2015
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore different filter families. We report extensive results enabling a systematic analysis. Using filtered channel features we obtain top performance on the challenging Caltech and KITTI datasets, while using only HOG+LUV as low-level features. When adding optical flow features we further improve detection quality and report the best known results on the Caltech dataset, reaching 93% recall at 1 FPPI. |
|---|---|
| AbstractList | This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level features in combination with a boosted decision forest. Based on this observation we propose a unifying framework and experimentally explore different filter families. We report extensive results enabling a systematic analysis. Using filtered channel features we obtain top performance on the challenging Caltech and KITTI datasets, while using only HOG+LUV as low-level features. When adding optical flow features we further improve detection quality and report the best known results on the Caltech dataset, reaching 93% recall at 1 FPPI. |
| Author | Zhang, Shanshan Benenson, Rodrigo Schiele, Bernt |
| Author_xml | – sequence: 1 givenname: Shanshan surname: Zhang fullname: Zhang, Shanshan email: shanshan.zhang@mpi-inf.mpg.de organization: Max Planck Institute for Informatics, Saarbrücken, Germany – sequence: 2 givenname: Rodrigo surname: Benenson fullname: Benenson, Rodrigo organization: Max Planck Institute for Informatics, Saarbrücken, Germany – sequence: 3 givenname: Bernt surname: Schiele fullname: Schiele, Bernt organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
| BookMark | eNpNkMFKAzEURaNUsK39AHEzSzdT30syyWQpxapQUETdDpnJCwammZpMF_69hXbR1b2Lw-FyZ2wSh0iM3SIsEcE8rL7fP5YcsFpqbmpdyws2Q6m0UEZJuGRTBCVKZdBMzvo1W-QcWhAAtTEcpoyvQz9SIld0PzZG6gtPdtwnyoUfUrEjR3lMwcbC0UjdGIZ4w6687TMtTjlnX-unz9VLuXl7fl09bsrAoR5LqrRRXlHLTSsdcG-FROuUtOCNqxA1kjW8E0p6qmroLCjDddtq7kAhF3N2f_Tu0vC7P8xotiF31Pc20rDPDWoNQlQo6wN6d0QDETW7FLY2_TWnZ8Q_-ZtWEw |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IH CBEJK RIE RIO 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/CVPR.2015.7298784 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1467369640 9781467369640 |
| EISSN | 1063-6919 |
| EndPage | 1760 |
| ExternalDocumentID | 7298784 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-e5796f6eb29b4d02fa341ad64a0f9d51171ea92c364fe580ca06927bb72d06123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387959201084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Thu Sep 04 17:10:11 EDT 2025 Wed Aug 20 06:20:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-e5796f6eb29b4d02fa341ad64a0f9d51171ea92c364fe580ca06927bb72d06123 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1770335148 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_7298784 proquest_miscellaneous_1770335148 |
| PublicationCentury | 2000 |
| PublicationDate | 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib030089920 ssj0023720 ssj0003211698 |
| Score | 2.492484 |
| Snippet | This paper starts from the observation that multiple top performing pedestrian detectors can be modelled by using an intermediate layer filtering low-level... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1751 |
| SubjectTerms | Channels Computer vision Conferences Decision trees Detectors Feature extraction Filter banks Filtering Image color analysis Optical filters Optical flow Pattern recognition Pedestrians Recall Shape Training |
| Title | Filtered channel features for pedestrian detection |
| URI | https://ieeexplore.ieee.org/document/7298784 https://www.proquest.com/docview/1770335148 |
| WOSCitedRecordID | wos000387959201084&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGpQIsoLwWJkbSO4_gxV1QMqKoQVN0iO75IlVBaNSm_H9t1ygALW2TlpfP57uzv7j6EHhWThmhIY1wwGlNm58KuoiQWDAPRpFDaM88tX_l8LlYrueigp2MtDAD45DMYu0uP5ZtNsXdHZRMbCAouaBd1OWeHWq1Wd1Ls8KsQ-jgrnNqdDZNHRIE4NhaPfLI0ZjKRAeFMsJxMl4s3l-SVjcMHAtPKL_Psfc6s_7-_PUPDn-K9aHF0S-eoA9UF6odoMwprubZDLaFDOzZAZLZ24Lm9zdUDV_AZleAbf9aRjW2jLRjwNB9VZKDxOVzVEH3Mnt-nL3EgVYjXBIsmBld8WjK7oZaaGkxKZf2YMowqXEpjwy-egJKkSBktIRO4UJhJwrXmxPheLZeoV20quEIR1VnmXpWlqqDW8inJElZixYSmCSnpCA2cVPLtoW9GHgQyQg-tWHOryw6gUBVs9nWecGt_XGmBuP770Rt06ubpkKp1i3rNbg936KT4atb17t4rxDc4prEz |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmugTKhjxcyY-Oui6rmufiQQjEmKQ8LZ02y0hMYOw4d9vWzZ80BfflmZfuV7vrv3d3Q_gUXGZ0hh9lyScuYzrudCryHMFJ0hjmqjYMs_Nx-FkIhYLOW3A074WBhFt8hn2zKXF8tNVsjVHZX0dCIpQsAM4DBijZFetVWuPTwyCVQU_xg77em_D5R5ToIaPxWKf3He59GSFcXpE9gfz6btJ8wp61ScqrpVfBtp6nWHrf_97Cp2f8j1nundMZ9DA_BxaVbzpVKu50EM1pUM91gY6XBr4XN9mKoJz_HQytK0_C0dHt84aU7REH7mTYmmzuPIOfAyfZ4ORW9EquEtKROmiKT_NuN5Sy5ilhGZKezKVcqZIJlMdgIUeKkkTn7MMA0ESRbikYRyHNLXdWi6gma9yvASHxUFgXhX4KmHa9inJPZ4RxUXMPJqxLrSNVKL1rnNGVAmkCw-1WCOtzQaiUDmutkXkhdoCmeICcfX3o_dwPJq9jaPxy-T1Gk7MnO0St26gWW62eAtHyVe5LDZ3Vjm-AaJOtHo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Filtered+channel+features+for+pedestrian+detection&rft.au=Zhang%2C+Shanshan&rft.au=Benenson%2C+Rodrigo&rft.au=Schiele%2C+Bernt&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1751&rft.epage=1760&rft_id=info:doi/10.1109%2FCVPR.2015.7298784&rft.externalDocID=7298784 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |