Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning
The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann...
Uloženo v:
| Vydáno v: | Proceedings - International Symposium on High-Performance Computer Architecture s. 1 - 13 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2016
|
| Témata: | |
| ISSN: | 2378-203X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann machine using GPUs, MPI-based HPC clusters, and FPGAs have been proposed in the literature. Regrettably, the required all-to-all communication among the processing units limits the performance of these efforts. This paper examines a new class of hardware accelerators for large-scale combinatorial optimization and deep learning based on memristive Boltzmann machines. A massively parallel, memory-centric hardware accelerator is proposed based on recently developed resistive RAM (RRAM) technology. The proposed accelerator exploits the electrical properties of RRAm to realize in situ, fine-grained parallel computation within memory arrays, thereby eliminating the need for exchanging data between the memory cells and the computational units. Two classical optimization problems, graph partitioning and boolean satisfiability, and a deep belief network application are mapped onto the proposed hardware. As compared to a multicore system, the proposed accelerator achieves 57x higher performance and 25x lower energy with virtually no loss in the quality of the solution to the optimization problems. The memristive accelerator is also compared against an RRAM based processing-in-memory (PIM) system, with respective performance and energy improvements of 6.89x and 5.2x. |
|---|---|
| AbstractList | The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann machine using GPUs, MPI-based HPC clusters, and FPGAs have been proposed in the literature. Regrettably, the required all-to-all communication among the processing units limits the performance of these efforts. This paper examines a new class of hardware accelerators for large-scale combinatorial optimization and deep learning based on memristive Boltzmann machines. A massively parallel, memory-centric hardware accelerator is proposed based on recently developed resistive RAM (RRAM) technology. The proposed accelerator exploits the electrical properties of RRAm to realize in situ, fine-grained parallel computation within memory arrays, thereby eliminating the need for exchanging data between the memory cells and the computational units. Two classical optimization problems, graph partitioning and boolean satisfiability, and a deep belief network application are mapped onto the proposed hardware. As compared to a multicore system, the proposed accelerator achieves 57x higher performance and 25x lower energy with virtually no loss in the quality of the solution to the optimization problems. The memristive accelerator is also compared against an RRAM based processing-in-memory (PIM) system, with respective performance and energy improvements of 6.89x and 5.2x. |
| Author | Ipek, Engin Bojnordi, Mahdi Nazm |
| Author_xml | – sequence: 1 givenname: Mahdi Nazm surname: Bojnordi fullname: Bojnordi, Mahdi Nazm email: bojnordi@ece.rochester.edu organization: Univ. of Rochester, Rochester, NY, USA – sequence: 2 givenname: Engin surname: Ipek fullname: Ipek, Engin email: ipek@ece.rochester.edu organization: Univ. of Rochester, Rochester, NY, USA |
| BookMark | eNotkE1LAzEYhKMo2Nb-APGSo5et-dps1lstaoWKHhS8Le9u3tjAblKzW8X-eiv2MAwDD8MwY3ISYkBCLjibcc7K6-XLYj4TjOtZoZRmqjwiY650IUvBOT8mIyELkwkm38_ItO99zYQudC5yPSL4hF3y_eC_kN7Gdth1EALtoFn7gDd0TteQ7DckpNA02GKCISbq9mpiV_vwFz20NG4G3_kdDD4GCsFSi7ihLUIKPnyck1MHbY_Tg0_I2_3d62KZrZ4fHhfzVeYFM0PWuDpXzjAUtbRScyVqLAUwZ7ipc83RGjA55IWxrkQOVhjHasuYklZxJ-SEXP33blL83GI_VJ3v97NbCBi3fcUN10wXuZJ79PIf9YhYbZLvIP1UhwPlL9n7Z_Y |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/HPCA.2016.7446049 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1467392111 9781467392112 |
| EISSN | 2378-203X |
| EndPage | 13 |
| ExternalDocumentID | 7446049 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-cfb54f80e2b3d36142be92a0f818b561ed8a85a578df9e1ad28f0bd0043d41f23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 163 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381808200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Oct 02 11:34:49 EDT 2025 Wed Aug 27 02:05:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-cfb54f80e2b3d36142be92a0f818b561ed8a85a578df9e1ad28f0bd0043d41f23 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1816067543 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1816067543 ieee_primary_7446049 |
| PublicationCentury | 2000 |
| PublicationDate | 20160301 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 20160301 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - International Symposium on High-Performance Computer Architecture |
| PublicationTitleAbbrev | HPCA |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026765256 ssj0002951 |
| Score | 2.3990521 |
| Snippet | The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accelerators Arrays Belief networks Combinatorial analysis Computation Computational modeling Hardware Learning Machine learning Optimization Partitioning Simulated annealing Training |
| Title | Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning |
| URI | https://ieeexplore.ieee.org/document/7446049 https://www.proquest.com/docview/1816067543 |
| WOSCitedRecordID | wos000381808200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIsoXzISI2lTJ04ctlJRdaHqAFK3yInPqBJJqn4h8es5u24ZYGFLhkSRfXfvXe6ej5D7nCFjM-p2RNPcQ0_knmQ-94RQgGxB65hndthEPJmI2SyZ1sjDQQsDALb5DLrm0tbyVZVvzK-yXoy5CzLaOqnHcbTTau1th0VxxJk5F8ZFYYbUwVUx-37SG0-HA9PIFXXdS9w0lV8h2OLKqPm_Lzoh7R-BHp0eoOeU1KA8I839hAbqHLZF4AUK68VboE_Vx_qrkGVJC9tACY90QI3m6lMugco8RwCyNXeKPJaiIWLObG7RQGmFgaVwik0qS0UVwIK6iRPvbfI2en4djj03WMGbM1-svVxnPNTCB5YFKkCAZhkkTPoa0TtDQgVKSMElOrPSCfSlYkL7mTJVQxX2NQvOSaOsSrggVGkBWcg1bmweQgAiU2DihkLcj7nyO6RlVi1d7M7OSN2CdcjdftlTtGdTpJAlVJtViowjMllMGFz-_egVOTb7uOsDuyaN9XIDN-Qo367nq-WtNYpvm3O5SA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIMFpPMV4BokjZV3atBm3MYGGYNMOQ-JWpY2DJrF22guJX4_TZXCAC7f20KpKbH-fa38xwFXGibFZdTuhaeaRJwpPcV94UmoktmBMLNJy2ETc68nX12Z_Da6_tTCIWDaf4Y29LGv5usjm9ldZPabchRjtOmyIkPKepVprZT08iiPB7ckwLg5zIg-ujtnwm_VOv92yrVzRjXuNm6fyKwiXyPJQ_d837cDBj0SP9b_BZxfWMN-D6mpGA3Muuw_YxVHpxwtkd8X77HOk8pyNyhZKvGUtZlVXH2qCTGUZQVBZdWfEZBmZImXN9pZMlBUUWkZOs8lUrplGHDM3c-LtAF4e7gftjudGK3hD7suZl5lUhEb6yNNABwTRPMUmV74h_E6JUqGWSgpF7qxNExtKc2n8VNu6oQ4bhgeHUMmLHI-AaSMxDYWhrc1CDFCmGm3k0IT8sdB-DfbtqiXj5ekZiVuwGlyulj0hi7ZlCpVjMZ8mxDkim8eEwfHfj17AVmfQfU6eH3tPJ7Bt93TZFXYKldlkjmewmS1mw-nkvDSQL2YCvI8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+High-Performance+Computer+Architecture&rft.atitle=Memristive+Boltzmann+machine%3A+A+hardware+accelerator+for+combinatorial+optimization+and+deep+learning&rft.au=Bojnordi%2C+Mahdi+Nazm&rft.au=Ipek%2C+Engin&rft.date=2016-03-01&rft.pub=IEEE&rft.eissn=2378-203X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FHPCA.2016.7446049&rft.externalDocID=7446049 |