Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning

The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Symposium on High-Performance Computer Architecture s. 1 - 13
Hlavní autoři: Bojnordi, Mahdi Nazm, Ipek, Engin
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.03.2016
Témata:
ISSN:2378-203X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann machine using GPUs, MPI-based HPC clusters, and FPGAs have been proposed in the literature. Regrettably, the required all-to-all communication among the processing units limits the performance of these efforts. This paper examines a new class of hardware accelerators for large-scale combinatorial optimization and deep learning based on memristive Boltzmann machines. A massively parallel, memory-centric hardware accelerator is proposed based on recently developed resistive RAM (RRAM) technology. The proposed accelerator exploits the electrical properties of RRAm to realize in situ, fine-grained parallel computation within memory arrays, thereby eliminating the need for exchanging data between the memory cells and the computational units. Two classical optimization problems, graph partitioning and boolean satisfiability, and a deep belief network application are mapped onto the proposed hardware. As compared to a multicore system, the proposed accelerator achieves 57x higher performance and 25x lower energy with virtually no loss in the quality of the solution to the optimization problems. The memristive accelerator is also compared against an RRAM based processing-in-memory (PIM) system, with respective performance and energy improvements of 6.89x and 5.2x.
AbstractList The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it has been successfully applied to training deep machine learning models on massive datasets. High performance implementations of the Boltzmann machine using GPUs, MPI-based HPC clusters, and FPGAs have been proposed in the literature. Regrettably, the required all-to-all communication among the processing units limits the performance of these efforts. This paper examines a new class of hardware accelerators for large-scale combinatorial optimization and deep learning based on memristive Boltzmann machines. A massively parallel, memory-centric hardware accelerator is proposed based on recently developed resistive RAM (RRAM) technology. The proposed accelerator exploits the electrical properties of RRAm to realize in situ, fine-grained parallel computation within memory arrays, thereby eliminating the need for exchanging data between the memory cells and the computational units. Two classical optimization problems, graph partitioning and boolean satisfiability, and a deep belief network application are mapped onto the proposed hardware. As compared to a multicore system, the proposed accelerator achieves 57x higher performance and 25x lower energy with virtually no loss in the quality of the solution to the optimization problems. The memristive accelerator is also compared against an RRAM based processing-in-memory (PIM) system, with respective performance and energy improvements of 6.89x and 5.2x.
Author Ipek, Engin
Bojnordi, Mahdi Nazm
Author_xml – sequence: 1
  givenname: Mahdi Nazm
  surname: Bojnordi
  fullname: Bojnordi, Mahdi Nazm
  email: bojnordi@ece.rochester.edu
  organization: Univ. of Rochester, Rochester, NY, USA
– sequence: 2
  givenname: Engin
  surname: Ipek
  fullname: Ipek, Engin
  email: ipek@ece.rochester.edu
  organization: Univ. of Rochester, Rochester, NY, USA
BookMark eNotkE1LAzEYhKMo2Nb-APGSo5et-dps1lstaoWKHhS8Le9u3tjAblKzW8X-eiv2MAwDD8MwY3ISYkBCLjibcc7K6-XLYj4TjOtZoZRmqjwiY650IUvBOT8mIyELkwkm38_ItO99zYQudC5yPSL4hF3y_eC_kN7Gdth1EALtoFn7gDd0TteQ7DckpNA02GKCISbq9mpiV_vwFz20NG4G3_kdDD4GCsFSi7ihLUIKPnyck1MHbY_Tg0_I2_3d62KZrZ4fHhfzVeYFM0PWuDpXzjAUtbRScyVqLAUwZ7ipc83RGjA55IWxrkQOVhjHasuYklZxJ-SEXP33blL83GI_VJ3v97NbCBi3fcUN10wXuZJ79PIf9YhYbZLvIP1UhwPlL9n7Z_Y
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/HPCA.2016.7446049
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1467392111
9781467392112
EISSN 2378-203X
EndPage 13
ExternalDocumentID 7446049
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-cfb54f80e2b3d36142be92a0f818b561ed8a85a578df9e1ad28f0bd0043d41f23
IEDL.DBID RIE
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381808200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Oct 02 11:34:49 EDT 2025
Wed Aug 27 02:05:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-cfb54f80e2b3d36142be92a0f818b561ed8a85a578df9e1ad28f0bd0043d41f23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1816067543
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1816067543
ieee_primary_7446049
PublicationCentury 2000
PublicationDate 20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 20160301
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings - International Symposium on High-Performance Computer Architecture
PublicationTitleAbbrev HPCA
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765256
ssj0002951
Score 2.3990521
Snippet The Boltzmann machine is a massively parallel computational model capable of solving a broad class of combinatorial optimization problems. In recent years, it...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accelerators
Arrays
Belief networks
Combinatorial analysis
Computation
Computational modeling
Hardware
Learning
Machine learning
Optimization
Partitioning
Simulated annealing
Training
Title Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning
URI https://ieeexplore.ieee.org/document/7446049
https://www.proquest.com/docview/1816067543
WOSCitedRecordID wos000381808200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioGpQIsoXzISI2lTJ04ctlJRdaHqAFK3yInPqBJJqn4h8es5u24ZYGFLhkSRfXfvXe6ej5D7nCFjM-p2RNPcQ0_knmQ-94RQgGxB65hndthEPJmI2SyZ1sjDQQsDALb5DLrm0tbyVZVvzK-yXoy5CzLaOqnHcbTTau1th0VxxJk5F8ZFYYbUwVUx-37SG0-HA9PIFXXdS9w0lV8h2OLKqPm_Lzoh7R-BHp0eoOeU1KA8I839hAbqHLZF4AUK68VboE_Vx_qrkGVJC9tACY90QI3m6lMugco8RwCyNXeKPJaiIWLObG7RQGmFgaVwik0qS0UVwIK6iRPvbfI2en4djj03WMGbM1-svVxnPNTCB5YFKkCAZhkkTPoa0TtDQgVKSMElOrPSCfSlYkL7mTJVQxX2NQvOSaOsSrggVGkBWcg1bmweQgAiU2DihkLcj7nyO6RlVi1d7M7OSN2CdcjdftlTtGdTpJAlVJtViowjMllMGFz-_egVOTb7uOsDuyaN9XIDN-Qo367nq-WtNYpvm3O5SA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgIMFpPMV4BokjZV3atBm3MYGGYNMOQ-JWpY2DJrF22guJX4_TZXCAC7f20KpKbH-fa38xwFXGibFZdTuhaeaRJwpPcV94UmoktmBMLNJy2ETc68nX12Z_Da6_tTCIWDaf4Y29LGv5usjm9ldZPabchRjtOmyIkPKepVprZT08iiPB7ckwLg5zIg-ujtnwm_VOv92yrVzRjXuNm6fyKwiXyPJQ_d837cDBj0SP9b_BZxfWMN-D6mpGA3Muuw_YxVHpxwtkd8X77HOk8pyNyhZKvGUtZlVXH2qCTGUZQVBZdWfEZBmZImXN9pZMlBUUWkZOs8lUrplGHDM3c-LtAF4e7gftjudGK3hD7suZl5lUhEb6yNNABwTRPMUmV74h_E6JUqGWSgpF7qxNExtKc2n8VNu6oQ4bhgeHUMmLHI-AaSMxDYWhrc1CDFCmGm3k0IT8sdB-DfbtqiXj5ekZiVuwGlyulj0hi7ZlCpVjMZ8mxDkim8eEwfHfj17AVmfQfU6eH3tPJ7Bt93TZFXYKldlkjmewmS1mw-nkvDSQL2YCvI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Symposium+on+High-Performance+Computer+Architecture&rft.atitle=Memristive+Boltzmann+machine%3A+A+hardware+accelerator+for+combinatorial+optimization+and+deep+learning&rft.au=Bojnordi%2C+Mahdi+Nazm&rft.au=Ipek%2C+Engin&rft.date=2016-03-01&rft.pub=IEEE&rft.eissn=2378-203X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FHPCA.2016.7446049&rft.externalDocID=7446049