Performance Analysis of Parallel Particle Swarm Optimization Based Clustering of Students

While accurate computational models that embody learning efficiency remain a distant and elusive goal, big data learning analytics approaches this goal by recognizing competency growth of learners, at various levels of granularity, using a combination of continuous, formative, and summative assessme...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE International Conference on Advanced Learning Technologies) s. 446 - 450
Hlavní autoři: Govindarajan, Kannan, Boulanger, David, Seanosky, Jeremie, Bell, Jason, Pinnell, Colin, Kumar, Vivekanandan Suresh, Kinshuk, Somasundaram, Thamarai Selvi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2015
Témata:
ISSN:2161-3761
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract While accurate computational models that embody learning efficiency remain a distant and elusive goal, big data learning analytics approaches this goal by recognizing competency growth of learners, at various levels of granularity, using a combination of continuous, formative, and summative assessments. Our earlier research employed the conventional Particle Swarm Optimization (PSO) based clustering mechanism to cluster large numbers of learners based on their observed study habits and the consequent growth of subject knowledge competencies. This paper describes a Parallel Particle Swarm Optimization (PPSO) based clustering mechanism to cluster learners. Using a simulation study, performance measures of quality of clusters such as the Inter Cluster Distance, the Intra Cluster Distance, the processing time and the acceleration values are estimated and compared.
AbstractList While accurate computational models that embody learning efficiency remain a distant and elusive goal, big data learning analytics approaches this goal by recognizing competency growth of learners, at various levels of granularity, using a combination of continuous, formative, and summative assessments. Our earlier research employed the conventional Particle Swarm Optimization (PSO) based clustering mechanism to cluster large numbers of learners based on their observed study habits and the consequent growth of subject knowledge competencies. This paper describes a Parallel Particle Swarm Optimization (PPSO) based clustering mechanism to cluster learners. Using a simulation study, performance measures of quality of clusters such as the Inter Cluster Distance, the Intra Cluster Distance, the processing time and the acceleration values are estimated and compared.
Author Kumar, Vivekanandan Suresh
Somasundaram, Thamarai Selvi
Seanosky, Jeremie
Pinnell, Colin
Govindarajan, Kannan
Boulanger, David
Bell, Jason
Kinshuk
Author_xml – sequence: 1
  givenname: Kannan
  surname: Govindarajan
  fullname: Govindarajan, Kannan
  email: kgovindarajan@athabascau.ca
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 2
  givenname: David
  surname: Boulanger
  fullname: Boulanger, David
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 3
  givenname: Jeremie
  surname: Seanosky
  fullname: Seanosky, Jeremie
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 4
  givenname: Jason
  surname: Bell
  fullname: Bell, Jason
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 5
  givenname: Colin
  surname: Pinnell
  fullname: Pinnell, Colin
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 6
  givenname: Vivekanandan Suresh
  surname: Kumar
  fullname: Kumar, Vivekanandan Suresh
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 7
  surname: Kinshuk
  fullname: Kinshuk
  organization: Athabasca Univ., Edmonton, AB, Canada
– sequence: 8
  givenname: Thamarai Selvi
  surname: Somasundaram
  fullname: Somasundaram, Thamarai Selvi
  email: stselvi@annauniv.edu
  organization: Anna Univ., Chennai, India
BookMark eNotj81KAzEYRSMoWGu3btzkBabmd5JZ1uIfFFpoXbgq3yTfSCCTKZMUqU-vRVf3bs7l3BtymYaEhNxxNuecNQ9vy8VqNxeM6zmX9QWZNcZyVRtppFTskkwEr3klTc2vySzn0DJljebCqAn52ODYDWMPySFdJIinHDIdOrqBEWLEeC4luIh0-wVjT9eHEvrwDSUMiT5CRk-X8ZgLjiF9nsFtOXpMJd-Sqw5ixtl_Tsn789Nu-Vqt1i9n4yoIZkvlnFWiFR47KTjwTrRaSau9rz02GqFxCsG1Hr11gEJ3yjLrlGEOvJEa5ZTc_-0GRNwfxtDDeNobUevfx_IHjpFWcQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICALT.2015.136
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISBN 9781467373340
1467373346
EndPage 450
ExternalDocumentID 7265376
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i208t-cc842b2def321a1f2b54385dd6de95ea9c4eacbded8cae25f4808c470cad735e3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380365400133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-3761
IngestDate Wed Aug 27 02:39:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-cc842b2def321a1f2b54385dd6de95ea9c4eacbded8cae25f4808c470cad735e3
PageCount 5
ParticipantIDs ieee_primary_7265376
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (IEEE International Conference on Advanced Learning Technologies)
PublicationTitleAbbrev icalt
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048751274
ssj0000740298
Score 1.6059623
Snippet While accurate computational models that embody learning efficiency remain a distant and elusive goal, big data learning analytics approaches this goal by...
SourceID ieee
SourceType Publisher
StartPage 446
SubjectTerms Acceleration
Atmospheric measurements
clustering
Clustering algorithms
Computational modeling
e-learning
hadoop distributed file system (HDFS)
learning analytics
parallel particle swarm optimization (PPSO)
parallel processing
Particle swarm optimization
Program processors
Writing
Title Performance Analysis of Parallel Particle Swarm Optimization Based Clustering of Students
URI https://ieeexplore.ieee.org/document/7265376
WOSCitedRecordID wos000380365400133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8ODJj038JgeP1qVp0qRXh8ODzMKmzNNI0lcY7EO6Tf9989puQ_DiLRRKy0t47yX5fRByx6zzXWieB1pavGYEHphYJwEI6zTkURKXQtrvL2ow0ONxkjbI_Y4LAwAl-AwecFje5WdLt8Gjsq7iMaqPNElTKVVxtbZrB_vukNetTJmFlUB1cfSWC_GIxW_Xa83GkCVd1BoYIbBLIs7rl7NKWVj6R__7pWPS2TP0aLqrPSekAYtTdGCu0Rpt8pHuGQF0qzxClzlNTYH2KTMclIuGDr9NMaevPnfMa1ImffS1LaO92QZlFPwH8MVhpYK56pC3_tOo9xzUNgrBlDO9DpzTglue-cjz0IQ5t1JEWqKVFCQSTOKEz742g0w7A1zmQjPthGLOZCqSEJ2R1mK5gHNCXeTbFREyo10scqmtUFZbDZnf9OSMuQvSxhBNPiuljEkdncu_H1-RQ5yBCvx6TVrrYgM35MB9raer4rac3h-lb6WL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zCnryYxO_zcGjdW2arOnVoUycs7Ap8zSS9AUG-5Bu03_fvLbbELx4C4XS8hLee0l-H4Tc-Nq4LtRaTwqN14zAPNWUsQdcGwk2jJu5kPZ7J-p25WAQJxVyu-bCAEAOPoM7HOZ3-enMLPGorBGxJqqPbJFtwTkLCrbWavVg5x2wspnJ83DEUV8c3eUCPGRxG_ZStTHw4waqDfQR2iUQ6fXLWyUvLY_7__upA1LfcPRosq4-h6QC0yP0YC7xGjXykWw4AXSlPUJnliYqQwOVMQ7yZUN73yqb0FeXPSYlLZPeu-qW0tZ4iUIK7gP4Yq_QwZzXydvjQ7_V9kojBW_EfLnwjJGcaZa62LNABZZpwUMp0EwKYgEqNtzlX51CKo0CJiyXvjQ88o1Ko1BAeEyq09kUTgg1oWtYeOAraZrcCql5pKWWkLptj_V9c0pqGKLhZ6GVMSyjc_b342uy2-6_dIadp-7zOdnD2SigsBekusiWcEl2zNdiNM-u8qn-AXDfqNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Advanced+Learning+Technologies%29&rft.atitle=Performance+Analysis+of+Parallel+Particle+Swarm+Optimization+Based+Clustering+of+Students&rft.au=Govindarajan%2C+Kannan&rft.au=Boulanger%2C+David&rft.au=Seanosky%2C+Jeremie&rft.au=Bell%2C+Jason&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=2161-3761&rft.spage=446&rft.epage=450&rft_id=info:doi/10.1109%2FICALT.2015.136&rft.externalDocID=7265376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3761&client=summon