Sequential Learnable Evolutionary Algorithm: A Research Program

Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the sear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE International Conference on Systems, Man, and Cybernetics s. 2841 - 2848
Hlavní autoři: Shiu Yin Yuen, Xin Zhang, Yang Lou
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the search progresses. First, a set of algorithms are run on a benchmark problem suite. Given a new problem, a default algorithm is run and its convergence characteristics are recorded. This is used to map to the problem database to find the most similar problem. In turn, the database returns the best algorithm for this problem and this algorithm is run in the second iteration and so on, aiming to home onto the most suitable algorithm for the problem. The resulting algorithm, named Sequential Learnable Evolutionary algorithm (SLEA), outperforms Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with multi-restarts. SLEA is also applied to a new problem, a real world application, and learns its characteristics. Experimental results show that it can correctly select the best algorithm for the problem. Finally, this paper proposes a new research program which learns the algorithm-problem mapping through solving real world problems accessed through the web and worldwide cooperation through Wikipedia.
AbstractList Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the search progresses. First, a set of algorithms are run on a benchmark problem suite. Given a new problem, a default algorithm is run and its convergence characteristics are recorded. This is used to map to the problem database to find the most similar problem. In turn, the database returns the best algorithm for this problem and this algorithm is run in the second iteration and so on, aiming to home onto the most suitable algorithm for the problem. The resulting algorithm, named Sequential Learnable Evolutionary algorithm (SLEA), outperforms Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with multi-restarts. SLEA is also applied to a new problem, a real world application, and learns its characteristics. Experimental results show that it can correctly select the best algorithm for the problem. Finally, this paper proposes a new research program which learns the algorithm-problem mapping through solving real world problems accessed through the web and worldwide cooperation through Wikipedia.
Author Shiu Yin Yuen
Xin Zhang
Yang Lou
Author_xml – sequence: 1
  surname: Shiu Yin Yuen
  fullname: Shiu Yin Yuen
  email: kelviny.ee@cityu.edu.hk
  organization: Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Xin Zhang
  fullname: Xin Zhang
  email: ecemark@mail.tjnu.edu.cn
  organization: Coll. of Electron. & Commun. Eng., Tianjin Normal Univ., Tianjin, China
– sequence: 3
  surname: Yang Lou
  fullname: Yang Lou
  email: felix.lou@my.cityu.edu.hk
  organization: Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China
BookMark eNotjkFLwzAYQCPoQedu3rzkD7Q2SZP08yKlzCl0TKz3kSZft0DaaNYJ_nsHenqXx-PdkMspTkjIHStyxgp46DZNzgsm8xLkBVmCrlipASoFml-Tpw6_TjjN3gTaokmT6QPS1XcMp9nHyaQfWod9TH4-jI-0pu94PFv2QN9S3Ccz3pKrwYQjLv-5IN3z6qN5ydrt-rWp28zzopozK0EJkH0JHKxVyLjjlptKGRBO9aW13DFAZMoJyy1zDo20coBKDr0SC3L_V_WIuPtMfjyP7bTQoLgWvzD2RWM
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC.2015.495
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479986972
1479986976
EndPage 2848
ExternalDocumentID 7379627
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i208t-c596395b4929cc6e12d2c2a86a93d6b4cc2d19ee16d3c2c1ddea5c5f985fb63
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368940202161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:36 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-c596395b4929cc6e12d2c2a86a93d6b4cc2d19ee16d3c2c1ddea5c5f985fb63
PageCount 8
ParticipantIDs ieee_primary_7379627
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9619378
Snippet Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm...
SourceID ieee
SourceType Publisher
StartPage 2841
SubjectTerms Algorithm design and analysis
algorithm selection
Classification algorithms
design optimization problems
Evolutionary computation
Machine learning algorithms
multi-restart algorithm
new research program
Optimization
Portfolios
Prediction algorithms
Title Sequential Learnable Evolutionary Algorithm: A Research Program
URI https://ieeexplore.ieee.org/document/7379627
WOSCitedRecordID wos000368940202161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29T0IxEG-AODipAeN3OjhaoH2vX26EQByUkGAMG2mvfUqCQPBB4n9vWxAdXNyaDm2u7fXu2t_dD6Fb7bXwIfIhlBYZyR13RBVtRbgOthu4Kmx60H95lIOBGo_1sILu9rkw3vsEPvPN2Ex_-W4B6_hU1pKZjFwxVVSVUmxztfZYdt0aPXUjVIs380gW8YsrJZmK_tH_JjlGjZ-cOzzcW5MTVPHzenClE9I5aOEMp0qoMdEJ9za782JWn7gze12EAP_t_R538DeOLo4UYVcNNOr3nrsPZEd5QKasrUoCPCiE5jYPXguA8JQ5BswoYXTmhM0BmKPaeypcBgxouJwMB15oxQsrslNUmy_m_gxhaikoA6ZgLrILGyuZsiBMbmM5TpDnqB5Fnyy3NS0mO6kv_u6-RIdxZbcgtitUK1drf40OYFNOP1Y3aSO-AGQYjTk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IhFGdmbXWqpq3ffQ8dQ4Uv8IVurulsqXPTNW8OHnzLzbSZuvXfB2jWoUs3xgH2gMd7Dz7vfRC6VU4J5yMfTEieYma5xTKvScyVt93AZW7ig_5zO-t25XCoegV0t82Fcc5F8JmrhGb8y7czWIansmqWZoErZgftcsZobZ2ttUWzq2q_8xDAWrzCAl3EL7aUaCyah_-b5giVf7Lukt7WnhyjgpuWvDMdsc5eDydJrIUaUp2SxmpzYvT8M6lPXmY-xH99u0_qyTeSLowUgFdl1G82Bg8tvCE9wGNakwsM3KuE4oZ5vwVAOEItBaql0Cq1wjAAaolyjgibAgXiryfNgedK8tyI9AQVp7OpO0UJMQSkBp1TG_iFtcmoNCA0M6EgJ2RnqBREH72vq1qMNlKf_919g_Zbg0571H7sPl2gg7DKa0jbJSou5kt3hfZgtRh_zK_jpnwB62yQgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Sequential+Learnable+Evolutionary+Algorithm%3A+A+Research+Program&rft.au=Shiu+Yin+Yuen&rft.au=Xin+Zhang&rft.au=Yang+Lou&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=2841&rft.epage=2848&rft_id=info:doi/10.1109%2FSMC.2015.495&rft.externalDocID=7379627