Sequential Learnable Evolutionary Algorithm: A Research Program
Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the sear...
Uloženo v:
| Vydáno v: | 2015 IEEE International Conference on Systems, Man, and Cybernetics s. 2841 - 2848 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the search progresses. First, a set of algorithms are run on a benchmark problem suite. Given a new problem, a default algorithm is run and its convergence characteristics are recorded. This is used to map to the problem database to find the most similar problem. In turn, the database returns the best algorithm for this problem and this algorithm is run in the second iteration and so on, aiming to home onto the most suitable algorithm for the problem. The resulting algorithm, named Sequential Learnable Evolutionary algorithm (SLEA), outperforms Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with multi-restarts. SLEA is also applied to a new problem, a real world application, and learns its characteristics. Experimental results show that it can correctly select the best algorithm for the problem. Finally, this paper proposes a new research program which learns the algorithm-problem mapping through solving real world problems accessed through the web and worldwide cooperation through Wikipedia. |
|---|---|
| AbstractList | Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm selection framework that learns to use the best algorithm based on previous runs, hence in effect using different and better algorithms as the search progresses. First, a set of algorithms are run on a benchmark problem suite. Given a new problem, a default algorithm is run and its convergence characteristics are recorded. This is used to map to the problem database to find the most similar problem. In turn, the database returns the best algorithm for this problem and this algorithm is run in the second iteration and so on, aiming to home onto the most suitable algorithm for the problem. The resulting algorithm, named Sequential Learnable Evolutionary algorithm (SLEA), outperforms Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with multi-restarts. SLEA is also applied to a new problem, a real world application, and learns its characteristics. Experimental results show that it can correctly select the best algorithm for the problem. Finally, this paper proposes a new research program which learns the algorithm-problem mapping through solving real world problems accessed through the web and worldwide cooperation through Wikipedia. |
| Author | Shiu Yin Yuen Xin Zhang Yang Lou |
| Author_xml | – sequence: 1 surname: Shiu Yin Yuen fullname: Shiu Yin Yuen email: kelviny.ee@cityu.edu.hk organization: Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China – sequence: 2 surname: Xin Zhang fullname: Xin Zhang email: ecemark@mail.tjnu.edu.cn organization: Coll. of Electron. & Commun. Eng., Tianjin Normal Univ., Tianjin, China – sequence: 3 surname: Yang Lou fullname: Yang Lou email: felix.lou@my.cityu.edu.hk organization: Dept. of Electron. Eng., City Univ. of Hong Kong, Hong Kong, China |
| BookMark | eNotjkFLwzAYQCPoQedu3rzkD7Q2SZP08yKlzCl0TKz3kSZft0DaaNYJ_nsHenqXx-PdkMspTkjIHStyxgp46DZNzgsm8xLkBVmCrlipASoFml-Tpw6_TjjN3gTaokmT6QPS1XcMp9nHyaQfWod9TH4-jI-0pu94PFv2QN9S3Ccz3pKrwYQjLv-5IN3z6qN5ydrt-rWp28zzopozK0EJkH0JHKxVyLjjlptKGRBO9aW13DFAZMoJyy1zDo20coBKDr0SC3L_V_WIuPtMfjyP7bTQoLgWvzD2RWM |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/SMC.2015.495 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781479986972 1479986976 |
| EndPage | 2848 |
| ExternalDocumentID | 7379627 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i208t-c596395b4929cc6e12d2c2a86a93d6b4cc2d19ee16d3c2c1ddea5c5f985fb63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368940202161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:36 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-c596395b4929cc6e12d2c2a86a93d6b4cc2d19ee16d3c2c1ddea5c5f985fb63 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7379627 |
| PublicationCentury | 2000 |
| PublicationDate | 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 20151001 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE International Conference on Systems, Man, and Cybernetics |
| PublicationTitleAbbrev | SMC |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9619378 |
| Snippet | Evolutionary algorithms are typically run several times in design optimization problems and the best solution taken. We propose a novel online algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2841 |
| SubjectTerms | Algorithm design and analysis algorithm selection Classification algorithms design optimization problems Evolutionary computation Machine learning algorithms multi-restart algorithm new research program Optimization Portfolios Prediction algorithms |
| Title | Sequential Learnable Evolutionary Algorithm: A Research Program |
| URI | https://ieeexplore.ieee.org/document/7379627 |
| WOSCitedRecordID | wos000368940202161&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29T0IxEG-AODipAeN3OjhaoH2vX26EQByUkGAMG2mvfUqCQPBB4n9vWxAdXNyaDm2u7fXu2t_dD6Fb7bXwIfIhlBYZyR13RBVtRbgOthu4Kmx60H95lIOBGo_1sILu9rkw3vsEPvPN2Ex_-W4B6_hU1pKZjFwxVVSVUmxztfZYdt0aPXUjVIs380gW8YsrJZmK_tH_JjlGjZ-cOzzcW5MTVPHzenClE9I5aOEMp0qoMdEJ9za782JWn7gze12EAP_t_R538DeOLo4UYVcNNOr3nrsPZEd5QKasrUoCPCiE5jYPXguA8JQ5BswoYXTmhM0BmKPaeypcBgxouJwMB15oxQsrslNUmy_m_gxhaikoA6ZgLrILGyuZsiBMbmM5TpDnqB5Fnyy3NS0mO6kv_u6-RIdxZbcgtitUK1drf40OYFNOP1Y3aSO-AGQYjTk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IhFGdmbXWqpq3ffQ8dQ4Uv8IVurulsqXPTNW8OHnzLzbSZuvXfB2jWoUs3xgH2gMd7Dz7vfRC6VU4J5yMfTEieYma5xTKvScyVt93AZW7ig_5zO-t25XCoegV0t82Fcc5F8JmrhGb8y7czWIansmqWZoErZgftcsZobZ2ttUWzq2q_8xDAWrzCAl3EL7aUaCyah_-b5giVf7Lukt7WnhyjgpuWvDMdsc5eDydJrIUaUp2SxmpzYvT8M6lPXmY-xH99u0_qyTeSLowUgFdl1G82Bg8tvCE9wGNakwsM3KuE4oZ5vwVAOEItBaql0Cq1wjAAaolyjgibAgXiryfNgedK8tyI9AQVp7OpO0UJMQSkBp1TG_iFtcmoNCA0M6EgJ2RnqBREH72vq1qMNlKf_919g_Zbg0571H7sPl2gg7DKa0jbJSou5kt3hfZgtRh_zK_jpnwB62yQgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=Sequential+Learnable+Evolutionary+Algorithm%3A+A+Research+Program&rft.au=Shiu+Yin+Yuen&rft.au=Xin+Zhang&rft.au=Yang+Lou&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=2841&rft.epage=2848&rft_id=info:doi/10.1109%2FSMC.2015.495&rft.externalDocID=7379627 |