Supporting activity recognition by visual analytics
Recognizing activities has become increasingly relevant in many application domains, such as security or ambient assisted living. To handle different scenarios, the underlying automated algorithms are configured using multiple input parameters. However, the influence and interplay of these parameter...
Uloženo v:
| Vydáno v: | 2015 IEEE Conference on Visual Analytics Science and Technology (VAST) s. 41 - 48 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recognizing activities has become increasingly relevant in many application domains, such as security or ambient assisted living. To handle different scenarios, the underlying automated algorithms are configured using multiple input parameters. However, the influence and interplay of these parameters is often not clear, making exhaustive evaluations necessary. On this account, we propose a visual analytics approach to supporting users in understanding the complex relationships among parameters, recognized activities, and associated accuracies. First, representative parameter settings are determined. Then, the respective output is computed and statistically analyzed to assess parameters' influence in general. Finally, visualizing the parameter settings along with the activities provides overview and allows to investigate the computed results in detail. Coordinated interaction helps to explore dependencies, compare different settings, and examine individual activities. By integrating automated, visual, and interactive means users can select parameter values that meet desired quality criteria. We demonstrate the application of our solution in a use case with realistic complexity, involving a study of human protagonists in daily living with respect to hundreds of parameter settings. |
|---|---|
| AbstractList | Recognizing activities has become increasingly relevant in many application domains, such as security or ambient assisted living. To handle different scenarios, the underlying automated algorithms are configured using multiple input parameters. However, the influence and interplay of these parameters is often not clear, making exhaustive evaluations necessary. On this account, we propose a visual analytics approach to supporting users in understanding the complex relationships among parameters, recognized activities, and associated accuracies. First, representative parameter settings are determined. Then, the respective output is computed and statistically analyzed to assess parameters' influence in general. Finally, visualizing the parameter settings along with the activities provides overview and allows to investigate the computed results in detail. Coordinated interaction helps to explore dependencies, compare different settings, and examine individual activities. By integrating automated, visual, and interactive means users can select parameter values that meet desired quality criteria. We demonstrate the application of our solution in a use case with realistic complexity, involving a study of human protagonists in daily living with respect to hundreds of parameter settings. |
| Author | Alsallakh, Bilal Rohlig, Martin Kruger, Frank Luboschik, Martin Schumann, Heidrun Kirste, Thomas Miksch, Silvia Bogl, Markus |
| Author_xml | – sequence: 1 givenname: Martin surname: Rohlig fullname: Rohlig, Martin email: martin.roehlig@uni-rostock.de organization: Univ. of Rostock, Rostock, Germany – sequence: 2 givenname: Martin surname: Luboschik fullname: Luboschik, Martin email: martin.luboschik@uni-rostock.de organization: Univ. of Rostock, Rostock, Germany – sequence: 3 givenname: Frank surname: Kruger fullname: Kruger, Frank email: frank.krueger2@uni-rostock.de organization: Univ. of Rostock, Rostock, Germany – sequence: 4 givenname: Thomas surname: Kirste fullname: Kirste, Thomas email: thomas.kirste@uni-rostock.de organization: Univ. of Rostock, Rostock, Germany – sequence: 5 givenname: Heidrun surname: Schumann fullname: Schumann, Heidrun email: heidrun.schumann@uni-rostock.de organization: Univ. of Rostock, Rostock, Germany – sequence: 6 givenname: Markus surname: Bogl fullname: Bogl, Markus email: boegl@cvast.tuwien.ac.at organization: Vienna Univ. of Technol., Vienna, Austria – sequence: 7 givenname: Bilal surname: Alsallakh fullname: Alsallakh, Bilal email: alsallakh@cvast.tuwien.ac.at organization: Vienna Univ. of Technol., Vienna, Austria – sequence: 8 givenname: Silvia surname: Miksch fullname: Miksch, Silvia email: miksch@cvast.tuwien.ac.at organization: Vienna Univ. of Technol., Vienna, Austria |
| BookMark | eNotj91KwzAYQCMo6OYeQLzpC7R-adr8XI6hThh4sent-JIm44OaliYb9O0V3NU5VwfOgt3GIXrGnjhUnIN5-V7vD1UNvK2UaJSszQ1b8EYqYZQWcM9WKZGFWirZaK0emNifx3GYMsVTgS7ThfJcTN4Np0iZhljYubhQOmNfYMR-zuTSI7sL2Ce_unLJvt5eD5ttuft8_9isdyXVoHPpwKCXKFptdBeUUxotCgQTXPCtck3X6GD1n4ARDjqPLdra8iA7GQRYsWTP_13y3h_HiX5wmo_XL_ELj4BHHw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VAST.2015.7347629 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1467397830 9781467397834 |
| EndPage | 48 |
| ExternalDocumentID | 7347629 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i208t-c09ae6a35898df7c78aba3a09fcfe57c4d48fb87c4093c0dea5ab2b1f6d6f30b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377892000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Dec 20 05:19:10 EST 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-c09ae6a35898df7c78aba3a09fcfe57c4d48fb87c4093c0dea5ab2b1f6d6f30b3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7347629 |
| PublicationCentury | 2000 |
| PublicationDate | 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 20151001 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE Conference on Visual Analytics Science and Technology (VAST) |
| PublicationTitleAbbrev | VAST |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026764887 |
| Score | 1.6650451 |
| Snippet | Recognizing activities has become increasingly relevant in many application domains, such as security or ambient assisted living. To handle different... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 41 |
| SubjectTerms | Algorithm design and analysis Data visualization H.5.2 [Information Interfaces and Presentation]: User Interfaces—Theory and methods I.3.6 [Computing Methodologies]: Computer Graphics—Methodology and Techniques Prediction algorithms Statistical analysis Time series analysis Visual analytics |
| Title | Supporting activity recognition by visual analytics |
| URI | https://ieeexplore.ieee.org/document/7347629 |
| WOSCitedRecordID | wos000377892000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGj22az2TyOIhYPUgrW0luZvKQgu9IX-O_dbNeK4MVbCIQwyQxDMt83H8AtY86kDKu3CSqecBd0FVK5TTTyIKRDS2uW6_RZjkZqNtPjFtztuTDe-xp85vtxWNfyXWk38atsIDNexa5uQ1tKseNqffsOE1JUviibwmVK9WB6_zKJ2K2836z7JaBS54_h0f92PobeDxGPjPcp5gRavuhCFpU4y8j-fyORlhDVH8geCFQWxHyS7WK1wXeCseVIbMTcg9fh4-ThKWm0D5IFo2qdWKrRC8xypZUL0kqFBjOkOtjgc2m54yoYVQ2ozix1HnM0zKRBOBEyarJT6BRl4c-ACETvOKPIfOBonNLMqmCF9imy1Obn0I0Gzz927S3mja0Xf09fwmE80x2e7Qo66-XGX8OB3a4Xq-VNfSdfC4SQeg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opv9-DRbbPZbB5HEaViLQVr6a1MXlKQXekL_PdutrUiePE2BEKYyQxDMt83A3BNqdUJxfJtgpLFzHpVhlRmYoXMc2HRkIrlOuyKXk-ORqpfg5sNF8Y5V4HPXCuIVS3fFmYRvsraImVl7Kot2M4Yo2TF1vr2HsoFL71RrEuXCVHt4e3LIKC3stZ6568RKlUGedj_39kH0Pyh4kX9TZI5hJrLG5CGWZxF4P-_RYGYEOY_RBsoUJFH-jNaTmYLfI8wNB0JrZib8PpwP7jrxOvpB_GEEjmPDVHoOKaZVNJ6YYREjSkS5Y13mTDMMum1LAWiUkOswww11YnnlvuU6PQI6nmRu2OIOKKzpcGQOs9QW6mokd5w5RKkiclOoBEUHn-sGlyM17qe_r18BbudwXN33H3sPZ3BXrDvCt12DvX5dOEuYMcs55PZ9LK6ny--zZPB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Conference+on+Visual+Analytics+Science+and+Technology+%28VAST%29&rft.atitle=Supporting+activity+recognition+by+visual+analytics&rft.au=Rohlig%2C+Martin&rft.au=Luboschik%2C+Martin&rft.au=Kruger%2C+Frank&rft.au=Kirste%2C+Thomas&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=41&rft.epage=48&rft_id=info:doi/10.1109%2FVAST.2015.7347629&rft.externalDocID=7347629 |