Multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems by using the filtering technique
In this paper, we extends the innovation vector to the innovation matrices and presents a filtering based multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems. The basic idea is using the filtering technique to transfor...
Uloženo v:
| Vydáno v: | Proceedings of the American Control Conference s. 925 - 929 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Automatic Control Council (AACC)
01.07.2016
|
| Témata: | |
| ISSN: | 2378-5861 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we extends the innovation vector to the innovation matrices and presents a filtering based multi-innovation extended stochastic gradient algorithm for multi-input multi-output controlled autoregressive moving average systems. The basic idea is using the filtering technique to transform a multivariable system into two identification models, then to identify the parameters of these two identification models interactively. The proposed multi-innovation identification algorithm can effectively improve the parameter estimation accuracy. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 2378-5861 |
| DOI: | 10.1109/ACC.2016.7525033 |