Learning Fine-Grained Image Similarity with Deep Ranking
Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than m...
Saved in:
| Published in: | 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 1386 - 1393 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Conference Proceeding Journal Article |
| Language: | English |
| Published: |
IEEE
01.06.2014
|
| Subjects: | |
| ISSN: | 1063-6919, 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is also proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 1063-6919 1063-6919 |
| DOI: | 10.1109/CVPR.2014.180 |