Learning Fine-Grained Image Similarity with Deep Ranking

Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE Conference on Computer Vision and Pattern Recognition s. 1386 - 1393
Hlavní autoři: Jiang Wang, Yang Song, Leung, Thomas, Rosenberg, Chuck, Jingbin Wang, Philbin, James, Bo Chen, Ying Wu
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2014
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is also proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models.
AbstractList Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is also proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models.
Author Ying Wu
Jiang Wang
Yang Song
Jingbin Wang
Leung, Thomas
Rosenberg, Chuck
Bo Chen
Philbin, James
Author_xml – sequence: 1
  surname: Jiang Wang
  fullname: Jiang Wang
  email: jwa368@eecs.northwestern.edu
– sequence: 2
  surname: Yang Song
  fullname: Yang Song
  email: yangsong@google.com
– sequence: 3
  givenname: Thomas
  surname: Leung
  fullname: Leung, Thomas
  email: leungt@google.com
– sequence: 4
  givenname: Chuck
  surname: Rosenberg
  fullname: Rosenberg, Chuck
  email: chuck@google.com
– sequence: 5
  surname: Jingbin Wang
  fullname: Jingbin Wang
  email: jingbinw@google.com
– sequence: 6
  givenname: James
  surname: Philbin
  fullname: Philbin, James
  email: jphilbin@google.com
– sequence: 7
  surname: Bo Chen
  fullname: Bo Chen
  email: bchen3@caltech.edu
– sequence: 8
  surname: Ying Wu
  fullname: Ying Wu
  email: yingwu@eecs.northwestern.edu
BookMark eNpNjj1PwzAURQ0qEqV0ZGLJyJLyXuw48YgKhUqVQOVjjZ6dl2KRuCVJhfrviVQGhqtzh6OreyFGYRtYiCuEGSKY2_nHy3qWAKoZ5nAipibLUWXGpIh5eirGCFrG2qAZ_evnYtp13kKiM61SqcciXzG1wYdNtPCB48eWBpTRsqENR6--8TW1vj9EP77_jO6Zd9GawtfgX4qziuqOp3-ciPfFw9v8KV49Py7nd6vYJ5D3sa0slNqSUY6lhpIIEikra11lJaXWUVkqIioVK4vgaAg41sNldqlmORE3x91du_3ec9cXje8c1zUF3u67AnWWGZTKwKBeH1XPzMWu9Q21h0IbMGmm5S9L-ll8
CODEN IEEPAD
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/CVPR.2014.180
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781479951185
1479951188
EISSN 1063-6919
EndPage 1393
ExternalDocumentID 6909576
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i208t-bfb0d6ba94ce360daa0233fbbcfb3a5bcadd4aaad4e4b10ca10c0ce6106ec56e3
IEDL.DBID RIE
ISICitedReferencesCount 939
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361555601055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Fri Sep 05 13:20:38 EDT 2025
Wed Aug 27 04:30:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-bfb0d6ba94ce360daa0233fbbcfb3a5bcadd4aaad4e4b10ca10c0ce6106ec56e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1677913490
PQPubID 23500
PageCount 8
ParticipantIDs ieee_primary_6909576
proquest_miscellaneous_1677913490
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationTitle 2014 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764536
ssj0023720
ssj0003211698
Score 2.5295296
Snippet Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1386
SubjectTerms Algorithms
Computational modeling
Computer architecture
Computer vision
Conferences
Learning
Load modeling
Mathematical models
Neural networks
Pattern recognition
Ranking
Semantics
Similarity
Training data
Visualization
Title Learning Fine-Grained Image Similarity with Deep Ranking
URI https://ieeexplore.ieee.org/document/6909576
https://www.proquest.com/docview/1677913490
WOSCitedRecordID wos000361555601055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLbaioGpQIsol4LESFrnsuO5UGCpqnKoW2Q7zyhDD_Xg9_PsJO0AC4OlyJYl6_nlHX7HR8g9S5Qykgo_EXgNqG-pr0KufGbyxPDcKAhyBzbBx-N0NhOTBnnY18IAgEs-g779dLH8fKl39qlsgJ6cQPu4SZqc87JWq-adkHEWJyV2t5PCEXo2TOwjCqFFY3GRTxb5TATi0G9zMPycTG2SV9wPbHdIh7LySzQ7fTNq_--kJ6R7KNzzJnuVdEoasDgj7crS9Kr_eINTNZhDPdchadVp9csboeHpP1voCNzzOkeB470V8wJdYLTYPftw6z0CrLypdLALXfIxenofvvgVrIJfhDTd-soomjMlRawhYjSXEqkTGaW0UZFMlEaRF0sp8xhiFVAtcVANaGcx0AmD6Jy0FssFXBBPUhOBAaYhkHHORYrLXOooYalhypge6VjaZKuyc0ZWkaVH7mriZsjNNkQhF7DcbbKAcW5zAQS9_HvrFTm2N1Uma12T1na9gxtypL-3xWZ961jiB5dCtVo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQYJTWcVOkDgScBLHic-FUgRUFZu4RbYzRj10EW35fsZOWg5w4WApsmXJGk9m8SwP4FykWlvFZJhKugbStyzUcaZDYcvUZqXVGJUebCLrdvP3d9lbgotFLQwi-uQzvHSfPpZfjszMPZVdkScnyT5ehpWU8ziqqrXm3BOLTPC0Qu_2cjgh30bIRUwhdngsPvYpklDISP503LxqvfWeXJoXv4xcf0iPs_JLOHuN027-76wbsPNTuhf0FkppE5ZwuAXN2tYM6j95QlNzOIf53Dbkda_Vj6BNpmd468AjaM_dgERO8Nwf9MkJJps9cE-3wTXiOHhSHnhhB17bNy-tTlgDK4T9mOXTUFvNSqGV5AYTwUqliDqJ1dpYnahUGxJ6XClVcuQ6YkbRYAbJ0hJoUoHJLjSGoyHuQaCYTdCiMBgpXmYyp-VMmSQVuRXa2n3YdrQpxlXvjKImyz6czYlbED-7IIUa4mg2KSKRZS4bQLKDv7eewlrn5fGheLjr3h_Curu1KnXrCBrTzxkew6r5mvYnnyeePb4BNBO4oQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Learning+Fine-Grained+Image+Similarity+with+Deep+Ranking&rft.au=Jiang+Wang&rft.au=Yang+Song&rft.au=Leung%2C+Thomas&rft.au=Rosenberg%2C+Chuck&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1386&rft.epage=1393&rft_id=info:doi/10.1109%2FCVPR.2014.180&rft.externalDocID=6909576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon