Learning Fine-Grained Image Similarity with Deep Ranking

Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2014 IEEE Conference on Computer Vision and Pattern Recognition s. 1386 - 1393
Hlavní autoři: Jiang Wang, Yang Song, Leung, Thomas, Rosenberg, Chuck, Jingbin Wang, Philbin, James, Bo Chen, Ying Wu
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2014
Témata:
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from images. It has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is also proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2014.180