Nonlinear inversion algorithm of geological forecast in induced polarization method

The linear inversion of hydro-geological prospecting relies on the initial model deeply and its accuracy is poor, so the paper applies the hybrid algorithm of ant colony algorithm (ACO) and BP neural network. Through the MATLAB programming to verify the classical model of the stone with different po...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 1154 - 1158
Hlavní autoři: Yao, Li, Chen, Feng-chao
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.05.2016
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The linear inversion of hydro-geological prospecting relies on the initial model deeply and its accuracy is poor, so the paper applies the hybrid algorithm of ant colony algorithm (ACO) and BP neural network. Through the MATLAB programming to verify the classical model of the stone with different position date. The inversion results are in agreement with the actual models. In order to highlight the advantages of the joint inversion, the BP algorithm is compared with the ACO-BP algorithm, The results show that the ACO-BP algorithm has its advantages in the inversion occurrence of the abnormal body, it can achieve the goal of advance warn in geological engineering.
AbstractList The linear inversion of hydro-geological prospecting relies on the initial model deeply and its accuracy is poor, so the paper applies the hybrid algorithm of ant colony algorithm (ACO) and BP neural network. Through the MATLAB programming to verify the classical model of the stone with different position date. The inversion results are in agreement with the actual models. In order to highlight the advantages of the joint inversion, the BP algorithm is compared with the ACO-BP algorithm, The results show that the ACO-BP algorithm has its advantages in the inversion occurrence of the abnormal body, it can achieve the goal of advance warn in geological engineering.
Author Feng-chao Chen
Li Yao
Author_xml – sequence: 1
  givenname: Li
  surname: Yao
  fullname: Yao, Li
– sequence: 2
  givenname: Feng-chao
  surname: Chen
  fullname: Chen, Feng-chao
BookMark eNotkMtOwzAURA0Cibb0AxCbLNmk-Mbxa4lCeUgVLIB15Dg3rZETFztFgq-nqJVGms05s5gpORvCgIRcAV0AUH1bVffVoqAgFpIzAC5PyFxLBaWQTEtgcEomoEuV67KUF2Sa0ielQjBKJ-TtJQzeDWhi5oZvjMmFITN-HaIbN30WumyNwYe1s8ZnXYhoTRr36D7tzmKbbYM30f2a8V_scdyE9pKcd8YnnB97Rj4elu_VU756fXyu7la5K6ga84ZSXuqmVVAwwQxYQ40BAwps0QAtWt0UslOqE4qLBjrgyGyraVcoKxoGbEZuDrvbGL52mMa6d8mi92bAsEs1KMZFqYCLPXp9QB0i1tvoehN_6uNd7A9UJ2CY
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SP
8FD
L7M
DOI 10.1109/CCDC.2016.7531157
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISBN 9781467397131
146739713X
1467397148
9781467397148
EISSN 1948-9447
EndPage 1158
ExternalDocumentID 7531157
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
7SP
8FD
L7M
ID FETCH-LOGICAL-i208t-b00549bd812363a1ca0aa1a181c2b102d9b27f88f6856b1f15e3cd90f28c6b313
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383222301071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Jul 11 16:48:29 EDT 2025
Wed Aug 27 02:12:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i208t-b00549bd812363a1ca0aa1a181c2b102d9b27f88f6856b1f15e3cd90f28c6b313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1835648156
PQPubID 23500
PageCount 5
ParticipantIDs ieee_primary_7531157
proquest_miscellaneous_1835648156
PublicationCentury 2000
PublicationDate 20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 20160501
  day: 01
PublicationDecade 2010
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.5913455
Snippet The linear inversion of hydro-geological prospecting relies on the initial model deeply and its accuracy is poor, so the paper applies the hybrid algorithm of...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1154
SubjectTerms Advanced Exploration
Algorithms
Ant Colony Optimization
Biological neural networks
Conductivity
Conferences
Electrodes
Geology
Inversions
Joint Inversion
Mathematical models
Matlab
Neural networks
Polarization Method
Testing
Training
Title Nonlinear inversion algorithm of geological forecast in induced polarization method
URI https://ieeexplore.ieee.org/document/7531157
https://www.proquest.com/docview/1835648156
WOSCitedRecordID wos000383222301071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sQ0Ev6jZx_iKCR7s1bZcm5_rrIGOgwm4lSZNZ0HZ03cD_3qTtpqAXoYceGgjvhfe95r3vewDX1BWWEakdzQhzAuNhh3JXO-bsaMV9InVSibg-hZMJnc3YtAU3Wy6MUqpqPlND-1rV8pNcruxV2cik1lYbpg3tMCQ1V2sTdYmVjmqqlthloyi6jWzjFhk2i5rpKb9CboUj9wf_28Eh9L8JeWi6hZojaKmsC_s_tAS7sPtQzej97MHzpJa_4AVKs3V9H4b4-zwv0vLtA-UazdUm5CGTsyrJl6X51DyJcXSCFvZ3t-FnonrEdB9e7-9eokenmZ3gpJ5Ly2quTsBEQq26is-x5C7nmBs8l54wSUXChBdqSjWhYyKwxmPly4S52qOSCB_7x9DJ8kydAKKhIFiyQHJJAxlQYYCPa5draaBMEzyAnjVUvKjlMeLGRgO42lg6NkfW1iF4pvLVMjZRZEwqmZrTv5eewZ51Xd1XeA6dslipC9iR6zJdFpeV378A1Jiv_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mVNQXdU6cnxF8tFv6laXP0zlxloET9lbSNJkFbUfXDfzvTdpuCvoi9CEPDYS7436X3N3vAG4oDnVHpDSkRzzDURo2KMPSULYjBbMJl1FB4jrs-j6dTLxRDW7XvTBCiKL4TLT1ssjlRylf6KeyjgqtNTfMBmy6jmPhsltr5XeJJo-q8pYm9jq93l1Pl26RdrWtmp_yy-kWSNLf_98ZDqD53ZKHRmuwOYSaSBqw94NNsAHbD8WU3s8jePFLAgyWoThZli9iiL1P0yzO3z5QKtFUrJweUlGr4Gyeq1_VFylVR2imL7xVhyYqh0w34bV_P-4NjGp6ghFbmObFZB3HCyOq-VVsZnKGGTOZQnRuhSqsiLzQ6kpKJaEuCU1pusLmkYelRTkJbdM-hnqSJuIEEO2GxOSewxmnDndoqKCPScwkV2AmidmCIy2oYFYSZASVjFpwvZJ0oIxWZyJYItLFPFB-xCUFUc3p31uvYGcwfh4Gw0f_6Qx2tRrLKsNzqOfZQlzAFl_m8Ty7LGzgCyYWs0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Nonlinear+inversion+algorithm+of+geological+forecast+in+induced+polarization+method&rft.au=Li+Yao&rft.au=Feng-chao+Chen&rft.date=2016-05-01&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=1154&rft.epage=1158&rft_id=info:doi/10.1109%2FCCDC.2016.7531157&rft.externalDocID=7531157