Block recursive least squares dictionary learning algorithm

The block recursive least square (BRLS) dictionary learning algorithm that dealing with training data arranged in block is proposed in this paper. BRLS can be used to update overcomplete dictionary for sparse signal representation. Different from traditional recursive least square algorithms, BRLS i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 1961 - 1964
Hlavní autoři: Jiang, Qianru, Li, Sheng, Lu, Zeru, Sun, Binbin
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.05.2016
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The block recursive least square (BRLS) dictionary learning algorithm that dealing with training data arranged in block is proposed in this paper. BRLS can be used to update overcomplete dictionary for sparse signal representation. Different from traditional recursive least square algorithms, BRLS is designed for data in a block form and the recursion is developed without using the matrix inversion lemma. The proposed algorithm is applied in synthetic data and real image reconstruction. Simulation results show that the new algorithm achieves a better performance than traditional approaches.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1948-9447
DOI:10.1109/CCDC.2016.7531304