Transactional Memory Scheduling Using Machine Learning Techniques
Current shared memory multi-core systems require powerful software and hardware techniques to support the performance parallel computation and consistency simultaneously. The use of transactional memory results in significant improvement of performance by avoiding thread synchronization and locks ov...
Gespeichert in:
| Veröffentlicht in: | 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP) S. 718 - 725 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.02.2016
|
| Schlagworte: | |
| ISSN: | 2377-5750 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Current shared memory multi-core systems require powerful software and hardware techniques to support the performance parallel computation and consistency simultaneously. The use of transactional memory results in significant improvement of performance by avoiding thread synchronization and locks overhead. Also, transactions scheduling apparently influences the performance of transactional memory. In this paper, we study the fairness of transactions' scheduling using Lazy Snapshot Algorithm. The fairness of transactions' scheduling aims to balance between transactions types which are read-only and update transactions. Indeed, we support the fairness of the scheduling procedure by a machine learning technique. The machine learning techniques improve the fairness decisions according to transactions' history. The experiments in this paper show that the throughput of the Lazy Snapshot Algorithm is improved with a machine learning support. Indeed, our experiments show that the learning significantly affects the performance if the durations of update transactions are much longer than read-only ones. We also study several machine learning techniques to investigate the fairness decisions accuracy. In fact, K-Nearest Neighbor machine learning technique shows more accuracy and more suitability, for our problem, than Support Vector Machine Model and Hidden Markov Model. |
|---|---|
| AbstractList | Current shared memory multi-core systems require powerful software and hardware techniques to support the performance parallel computation and consistency simultaneously. The use of transactional memory results in significant improvement of performance by avoiding thread synchronization and locks overhead. Also, transactions scheduling apparently influences the performance of transactional memory. In this paper, we study the fairness of transactions' scheduling using Lazy Snapshot Algorithm. The fairness of transactions' scheduling aims to balance between transactions types which are read-only and update transactions. Indeed, we support the fairness of the scheduling procedure by a machine learning technique. The machine learning techniques improve the fairness decisions according to transactions' history. The experiments in this paper show that the throughput of the Lazy Snapshot Algorithm is improved with a machine learning support. Indeed, our experiments show that the learning significantly affects the performance if the durations of update transactions are much longer than read-only ones. We also study several machine learning techniques to investigate the fairness decisions accuracy. In fact, K-Nearest Neighbor machine learning technique shows more accuracy and more suitability, for our problem, than Support Vector Machine Model and Hidden Markov Model. |
| Author | Busch, Costas Assiri, Basem |
| Author_xml | – sequence: 1 givenname: Basem surname: Assiri fullname: Assiri, Basem email: bassir1@lsu.edu organization: Louisana State Univ., Baton Rouge, LA, USA – sequence: 2 givenname: Costas surname: Busch fullname: Busch, Costas email: busch@csc.lsu.edu organization: Louisana State Univ., Baton Rouge, LA, USA |
| BookMark | eNotjT1PwzAURQ0CibYwMbJkZEnxs53YHqtSPqRUVKKdoxfnhRqlTombof8eqrLcI10d3TtmV6ELxNg98CkAt0-r59VUcMinAi7YGFSupdE6F5dsJKTWaaYzfsPGMX5zzrUSdsRm6x5DRHfwXcA2WdKu64_Jp9tSPbQ-fCWbeMoluq0PlBSEfTgVa3Lb4H8GirfsusE20t0_J2zzsljP39Li4_V9PitSL7g5pOi0Q1m52hJgg7a2VQZWGSEMijpXjlPTZKLRQAKqxuQaSVVOgnOWC0Q5YY_n3X3fnX4P5c5HR22LgbohlmAg5wqEgT_14ax6Iir3vd9hfyy1UpkCKX8Bc6RYxg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/PDP.2016.21 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1467387762 9781467387767 |
| EISSN | 2377-5750 |
| EndPage | 725 |
| ExternalDocumentID | 7445413 |
| Genre | orig-research |
| GroupedDBID | 29N 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-i208t-ac7ca3bcd9e1afa9d9b51948228a2d64c0eff52f71e21bf867ae4bc31cc902aa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381810900107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Jul 11 07:49:26 EDT 2025 Wed Aug 27 02:06:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-ac7ca3bcd9e1afa9d9b51948228a2d64c0eff52f71e21bf867ae4bc31cc902aa3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| PQID | 1816041281 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7445413 proquest_miscellaneous_1816041281 |
| PublicationCentury | 2000 |
| PublicationDate | 20160201 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 20160201 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP) |
| PublicationTitleAbbrev | EMPDP |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0007429 ssj0001968140 |
| Score | 1.5898179 |
| Snippet | Current shared memory multi-core systems require powerful software and hardware techniques to support the performance parallel computation and consistency... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 718 |
| SubjectTerms | Accuracy Algorithms Computer programs Decisions Fairness Values Hidden Markov Model Hidden Markov models History K-Nearest Neighbor Lazy Snapshot Algorithm Locks Machine learning Machine learning algorithms Scheduling Support Vector Machine Support vector machines Synchronism Throughput Training Transactional Memory |
| Title | Transactional Memory Scheduling Using Machine Learning Techniques |
| URI | https://ieeexplore.ieee.org/document/7445413 https://www.proquest.com/docview/1816041281 |
| WOSCitedRecordID | wos000381810900107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP-Yw4MnH5s4X0TwaLemzZLmKOrw4EYPE3YrSfpFB9LJHoL_vUnWbQe9eCuUlvKlzfdr8nsA3CJHXRqRRioWxkeY2UjGGUbSYSPvaG6xDD6zL2I0yiYTmTfgbquFQcRAPsOuPwx7-eXMrPxSWU8w1mc-onZPCLHWau3WUyT35k3bWdj98slaj0dj2csfc8_j4l1vChpyVH5NvqGjDA7_9yxH0N5J80i-bTrH0MDqBA432Qyk_lRbcD_eBYGrDzL0hNpvd_rdtRavQCeBK0CGgUuJpLZZfSPjjafrog2vg6fxw3NUxyVE0yTOlpEywqhUm1IiVVbJUmoHz5hDAJlKSs5MjNb2EysoJlTbjAuFTJuUGiPjRKn0FJrVrMIzIA6Eaa2ZpH1ExkzpYINWKTfudtQyqzrQ8hUpPteOGEVdjA7cbEpauLfUbz2oCmerReFwBPfOXhk9__vSCzjww7PmQ19Cczlf4RXsm6_ldDG_DkP9A8xLq2c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP8YKuhp6ibOZwSPdmva9JGjqGPiNnqYsFtJ0i86kE72EPzvTbJuO-jFW6G0lC9tvl-T3wPgFmOUhUpCT_iJshFm2uN-ih432Mg6mmssnM9sPxkO0_GYZzW422hhENGRz7BtD91efjFVS7tU1kkYi5iNqN2NGAvoSq21XVHhsbVv2szD5qePV4o86vNO9phZJlfctragLknl1_Trekq3_r-nOYTmVpxHsk3bOYIalsdQX6czkOpjbcD9aBsFLj7IwFJqv83pd9NcrAadOLYAGTg2JZLKaPWNjNaurvMmvHafRg89rwpM8CaBny48oRIlQqkKjlRowQsuDUBjBgOkIihipnzUOgp0QjGgUqdxIpBJFVKluB8IEZ7ATjkt8RSIgWFSSsZphMiYKgxwkCKMlbkd1UyLFjRsRfLPlSdGXhWjBTfrkubmPbWbD6LE6XKeGyQRW2-vlJ79fek17PdGg37efx6-nMOBHaoVO_oCdhazJV7CnvpaTOazKzfsP-Ljrq4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+24th+Euromicro+International+Conference+on+Parallel%2C+Distributed%2C+and+Network-Based+Processing+%28PDP%29&rft.atitle=Transactional+Memory+Scheduling+Using+Machine+Learning+Techniques&rft.au=Assiri%2C+Basem&rft.au=Busch%2C+Costas&rft.date=2016-02-01&rft.pub=IEEE&rft.eissn=2377-5750&rft.spage=718&rft.epage=725&rft_id=info:doi/10.1109%2FPDP.2016.21&rft.externalDocID=7445413 |