A new parameter adaptation method for Genetic Algorithms and Ant Colony Optimization algorithms

This Ant Colony Optimization algorithms and Genetic Algorithms are actively used in controller design, robotic path planning, design automation, biomedical imaging, data mining, and distribution network planning. This paper introduces a genetic algorithm implementation, an ant colony optimization al...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Electro Information Technology s. 0668 - 0673
Hlavní autoři: Byerly, Adam, Uskov, Alexander
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.05.2016
Témata:
ISSN:2154-0373
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This Ant Colony Optimization algorithms and Genetic Algorithms are actively used in controller design, robotic path planning, design automation, biomedical imaging, data mining, and distribution network planning. This paper introduces a genetic algorithm implementation, an ant colony optimization algorithm implementation, and a method of adapting the parameters for the algorithms during the course of their execution whenever they cease producing better solutions. Additionally, it presents the results of experiments performed with and without the method applied. The obtained research outcomes clearly show that the method has the great potential to improve the solutions arrived at in both types of nature inspired algorithms, though the greater improvement is achieved whenever an algorithm tends to stagnate further from the theoretical optimum as happened with the genetic algorithm as compared to with the ant colony optimization algorithm.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:2154-0373
DOI:10.1109/EIT.2016.7535319