Machine learning guided exploration for sampling-based motion planning algorithms
We propose a machine learning (ML)-inspired approach to estimate the relevant region of a motion planning problem during the exploration phase of sampling-based path-planners. The algorithm guides the exploration so that it draws more samples from the relevant region as the number of iterations incr...
Uloženo v:
| Vydáno v: | 2015 IEEE RSJ International Conference on Intelligent Robots and Systems (IROS) s. 2646 - 2652 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2015
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose a machine learning (ML)-inspired approach to estimate the relevant region of a motion planning problem during the exploration phase of sampling-based path-planners. The algorithm guides the exploration so that it draws more samples from the relevant region as the number of iterations increases. The approach works in two steps: first, it predicts if a given sample is collision-free (classification phase) without calling the collision-checker, and it then estimates if it is a promising sample, i.e., if it has the potential to improve the current best solution (regression phase), without solving the local steering problem. The proposed exploration strategy is integrated to the RRT # algorithm. Numerical simulations demonstrate the efficiency of the proposed approach. |
|---|---|
| AbstractList | We propose a machine learning (ML)-inspired approach to estimate the relevant region of a motion planning problem during the exploration phase of sampling-based path-planners. The algorithm guides the exploration so that it draws more samples from the relevant region as the number of iterations increases. The approach works in two steps: first, it predicts if a given sample is collision-free (classification phase) without calling the collision-checker, and it then estimates if it is a promising sample, i.e., if it has the potential to improve the current best solution (regression phase), without solving the local steering problem. The proposed exploration strategy is integrated to the RRT # algorithm. Numerical simulations demonstrate the efficiency of the proposed approach. |
| Author | Arslan, Oktay Tsiotras, Panagiotis |
| Author_xml | – sequence: 1 givenname: Oktay surname: Arslan fullname: Arslan, Oktay email: oktay@gatech.edu organization: Inst. for Robot. & Intell. Machines, Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 givenname: Panagiotis surname: Tsiotras fullname: Tsiotras, Panagiotis email: tsiotras@gatech.edu organization: D. Guggenheim Sch. of Aerosp. Eng., Inst. for Robot. & Intell. Machines, Atlanta, GA, USA |
| BookMark | eNotj8tKAzEYhSMoaGsfQNzMC8yYy2SSLKWoLVSKt3X50_xpI5nMkBlB395aezZn8fEdOBNynrqEhNwwWjFGzd3ydf1WccpkpYQUSugzMmG1Mn-pm0syG4ZPSikztZSsviIvz7Ddh4RFRMgppF2x-woOXYHffewyjKFLhe9yMUDbxwMvLQwH3HZH0kdIRwvirsth3LfDNbnwEAecnXpKPh4f3ueLcrV-Ws7vV2XgVI8laItS8C1YzxQq7UBah9xxqT1XwqNykqMzWujGNlSiR2Yck3UNxnIAMSW3_7sBETd9Di3kn83ptfgFogJRrQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/IROS.2015.7353738 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479999946 9781479999941 |
| EndPage | 2652 |
| ExternalDocumentID | 7353738 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IG 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i208t-a8be532cabf17e78da5bde2d258f273fe7d52ed98386b605efe19d1544a9b2aa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371885402122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:54:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i208t-a8be532cabf17e78da5bde2d258f273fe7d52ed98386b605efe19d1544a9b2aa3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7353738 |
| PublicationCentury | 2000 |
| PublicationDate | 20150901 |
| PublicationDateYYYYMMDD | 2015-09-01 |
| PublicationDate_xml | – month: 09 year: 2015 text: 20150901 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 IEEE RSJ International Conference on Intelligent Robots and Systems (IROS) |
| PublicationTitleAbbrev | IROS |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001945514 |
| Score | 2.2040563 |
| Snippet | We propose a machine learning (ML)-inspired approach to estimate the relevant region of a motion planning problem during the exploration phase of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2646 |
| SubjectTerms | Approximation algorithms Machine learning algorithms Planning Prediction algorithms Search problems Training Yttrium |
| Title | Machine learning guided exploration for sampling-based motion planning algorithms |
| URI | https://ieeexplore.ieee.org/document/7353738 |
| WOSCitedRecordID | wos000371885402122&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW1Kjl4NG03aZrsWSwKWusX9FbyMVkXdFvarb_fJLu0CF68hBBIAhPCm0zezEPoShvjwGpDuJOMDIV1RHHfaOnhMHGCylFMFH4Qk4mczdJpA11vc2EAIJLPoBe68S_fLswmhMr6gvFQiKeJmkKMqlytXTwlHQbwrz8uk0Hav395eg3cLd6r5_0SUIn4MT74386HqLNLxMPTLcQcoQYUbfT8GAmQgGvFhwxnm9yCxdXC0dTY-6J4rQJdvMhIgCqLK8EevKxlirD6zBarvPz4WnfQ-_j27eaO1MoIJKcDWRIlNXBGjdIuESCkVVxboJZy6bw_4kBYTsGmksmR9g8WcJCkNhTeUammSrFj1CoWBZwgHHwOzajlwmh_mT06JYlxdmiM0JoZc4rawRzzZVX8Yl5b4uzv4S7aDxavSFjnqFWuNnCB9sx3ma9Xl_HEfgAxqZt3 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjC2yX0u7ZSCAComLCjfRjumyiC4HF3-92dwMx8eKlaZq0TaZp3nT6Zh7AvdLaolHaY1YEXpsb60mWNUpkcOhbTkUnTxQe8NFITKfhuAIP21wYRMzJZ9hw3fwv3yz0xoXKmjxgrhDPHuw75awyW2sXUQnbDv7Lr0u_FTb7by_vjr3FGuXMXxIqOYJ0j_-39wnUd6l4ZLwFmVOoYFKD12FOgURSaj5EJNrEBg0pFs6NTTJvlKylI4wnkefAypBCsocsS6EiIj-jxSpO51_rOnx0nyaPPa_URvBi2hKpJ4VCFlAtlfU5cmEkUwapoUzYzCOxyA2jaEIRiI7Knixo0Q-NK70jQ0WlDM6gmiwSPAfivA4VUMO4Vtl1zvDJ97U1ba25UoHWF1Bz5pgti_IXs9ISl38P38FhbzIczAb90fMVHDnrF5Ssa6imqw3ewIH-TuP16jY_vR94_p7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+RSJ+International+Conference+on+Intelligent+Robots+and+Systems+%28IROS%29&rft.atitle=Machine+learning+guided+exploration+for+sampling-based+motion+planning+algorithms&rft.au=Arslan%2C+Oktay&rft.au=Tsiotras%2C+Panagiotis&rft.date=2015-09-01&rft.pub=IEEE&rft.spage=2646&rft.epage=2652&rft_id=info:doi/10.1109%2FIROS.2015.7353738&rft.externalDocID=7353738 |